Multispectral Indices for Wildfire Management
- URL: http://arxiv.org/abs/2309.01751v2
- Date: Mon, 10 Feb 2025 16:05:55 GMT
- Title: Multispectral Indices for Wildfire Management
- Authors: Afonso Oliveira, João P. Matos-Carvalho, Filipe Moutinho, Nuno Fachada,
- Abstract summary: The paper examines the application of multispectral aerial and satellite imagery in wildfire management.<n>It emphasizes the identification and analysis of key factors influencing wildfire behavior, such as combustible vegetation and water features.
- Score: 0.0
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: The increasing frequency and severity of wildfires requires advanced methods for effective surveillance and management. Traditional ground-based observation techniques often struggle to adapt to rapidly changing fire behavior and environmental conditions. This paper examines the application of multispectral aerial and satellite imagery in wildfire management, emphasizing the identification and analysis of key factors influencing wildfire behavior, such as combustible vegetation and water features. Through a comprehensive review of current literature and the presentation of two practical case studies, we assess various multispectral indices and evaluate their effectiveness in extracting critical environmental attributes essential for wildfire prevention and management. Our case studies highlight several indices as particularly effective for segmentation and extraction: NVDI for vegetation, MNDWI for water features, and MSR for artificial structures. These indices significantly enhance wildfire data processing, thereby supporting improved monitoring and response strategies.
Related papers
- Advancing Eurasia Fire Understanding Through Machine Learning Techniques [0.0]
We present one of the most extensive datasets available for wildfire analysis in Russia, covering 13 consecutive months of observations.
We conduct exploratory data analysis and develop predictive models to identify key fire behavior patterns across different fire categories and ecosystems.
arXiv Detail & Related papers (2025-02-24T10:22:17Z) - Bushfire Severity Modelling and Future Trend Prediction Across Australia: Integrating Remote Sensing and Machine Learning [0.43012765978447565]
This study presents an in-depth analysis of bushfire severity in Australia over the last twelve years.
By utilizing Landsat imagery and integrating spectral indices like NDVI, NBR, and Burn Index, along with topographical and climatic factors, we developed a robust predictive model.
The model achieved high accuracy, 86.13%, demonstrating its effectiveness in predicting fire severity across diverse Australian ecosystems.
arXiv Detail & Related papers (2024-09-18T04:57:48Z) - Deep Index Policy for Multi-Resource Restless Matching Bandit and Its Application in Multi-Channel Scheduling [6.648181286553698]
We discuss a multi-resource restless matching bandit (MR-RMB) model for heterogeneous resource systems.
We introduce a new Deep Index Policy (DIP), an online learning algorithm tailored for MR-RMB.
Our simulation results show that DIP indeed learns the partial indexes efficiently.
arXiv Detail & Related papers (2024-08-13T21:24:14Z) - Enhancing Tree Type Detection in Forest Fire Risk Assessment: Multi-Stage Approach and Color Encoding with Forest Fire Risk Evaluation Framework for UAV Imagery [0.0]
Forest fires pose a significant threat to ecosystems, economies, and human health worldwide.
Unmanned Aerial Vehicles equipped with advanced computer vision algorithms offer a promising solution for forest fire detection and assessment.
We optimize an integrated forest fire risk assessment framework using UAVs and multi-stage object detection algorithms.
arXiv Detail & Related papers (2024-07-27T05:52:31Z) - Variable-Agnostic Causal Exploration for Reinforcement Learning [56.52768265734155]
We introduce a novel framework, Variable-Agnostic Causal Exploration for Reinforcement Learning (VACERL)
Our approach automatically identifies crucial observation-action steps associated with key variables using attention mechanisms.
It constructs the causal graph connecting these steps, which guides the agent towards observation-action pairs with greater causal influence on task completion.
arXiv Detail & Related papers (2024-07-17T09:45:27Z) - Decision support system for Forest fire management using Ontology with Big Data and LLMs [0.8668211481067458]
Fire weather indices, which assess wildfire risk and predict resource demands, are vital.
With the rise of sensor networks in fields like healthcare and environmental monitoring, semantic sensor networks are increasingly used to gather climatic data.
This paper discusses using Apache Spark for early forest fire detection, enhancing fire risk prediction with meteorological and geographical data.
arXiv Detail & Related papers (2024-05-18T17:30:30Z) - A Synergistic Approach to Wildfire Prevention and Management Using AI, ML, and 5G Technology in the United States [44.99833362998488]
This research investigates proactive methods for detecting and handling wildfires in the United States.
The specific objective of this research covers proactive detection and prevention of wildfires using advanced technology.
Various methods, such as AI-enabled remote sensing and 5G-based active monitoring, can enhance proactive wildfire detection and management.
arXiv Detail & Related papers (2024-02-27T04:09:30Z) - DIVERSIFY: A General Framework for Time Series Out-of-distribution
Detection and Generalization [58.704753031608625]
Time series is one of the most challenging modalities in machine learning research.
OOD detection and generalization on time series tend to suffer due to its non-stationary property.
We propose DIVERSIFY, a framework for OOD detection and generalization on dynamic distributions of time series.
arXiv Detail & Related papers (2023-08-04T12:27:11Z) - Sequential Attention Source Identification Based on Feature
Representation [88.05527934953311]
This paper proposes a sequence-to-sequence based localization framework called Temporal-sequence based Graph Attention Source Identification (TGASI) based on an inductive learning idea.
It's worth mentioning that the inductive learning idea ensures that TGASI can detect the sources in new scenarios without knowing other prior knowledge.
arXiv Detail & Related papers (2023-06-28T03:00:28Z) - Guided Depth Map Super-resolution: A Survey [88.54731860957804]
Guided depth map super-resolution (GDSR) aims to reconstruct a high-resolution (HR) depth map from a low-resolution (LR) observation with the help of a paired HR color image.
A myriad of novel and effective approaches have been proposed recently, especially with powerful deep learning techniques.
This survey is an effort to present a comprehensive survey of recent progress in GDSR.
arXiv Detail & Related papers (2023-02-19T15:43:54Z) - Neuroevolution-based Classifiers for Deforestation Detection in Tropical
Forests [62.997667081978825]
Millions of hectares of tropical forests are lost every year due to deforestation or degradation.
Monitoring and deforestation detection programs are in use, in addition to public policies for the prevention and punishment of criminals.
This paper proposes the use of pattern classifiers based on neuroevolution technique (NEAT) in tropical forest deforestation detection tasks.
arXiv Detail & Related papers (2022-08-23T16:04:12Z) - Semantic Sensor Network Ontology based Decision Support System for
Forest Fire Management [7.615717976132551]
Fire weather indices are widely used to measure fire danger and are used to issue bushfire warnings.
This work presents a Web-based mapping interface to help users visualize the changes in fire weather indices over time.
arXiv Detail & Related papers (2022-04-03T19:10:00Z) - Target-aware Dual Adversarial Learning and a Multi-scenario
Multi-Modality Benchmark to Fuse Infrared and Visible for Object Detection [65.30079184700755]
This study addresses the issue of fusing infrared and visible images that appear differently for object detection.
Previous approaches discover commons underlying the two modalities and fuse upon the common space either by iterative optimization or deep networks.
This paper proposes a bilevel optimization formulation for the joint problem of fusion and detection, and then unrolls to a target-aware Dual Adversarial Learning (TarDAL) network for fusion and a commonly used detection network.
arXiv Detail & Related papers (2022-03-30T11:44:56Z) - Handling Distribution Shifts on Graphs: An Invariance Perspective [78.31180235269035]
We formulate the OOD problem on graphs and develop a new invariant learning approach, Explore-to-Extrapolate Risk Minimization (EERM)
EERM resorts to multiple context explorers that are adversarially trained to maximize the variance of risks from multiple virtual environments.
We prove the validity of our method by theoretically showing its guarantee of a valid OOD solution.
arXiv Detail & Related papers (2022-02-05T02:31:01Z) - R\&D evaluation methodology based on group-AHP with uncertainty [0.17689918341582753]
We present an approach to evaluate Research & Development (R&D) performance based on the Analytic Hierarchy Process (AHP) method.
We single out a set of indicators needed for R&D performance evaluation.
The numerical values associated with all the indicators are then used to assign a score to a given R&D project.
arXiv Detail & Related papers (2021-08-05T13:04:33Z) - Comparing ML based Segmentation Models on Jet Fire Radiation Zone [0.0]
characterization of fire accidents is important from a risk management point of view.
One such characterization would be the segmentation of different radiation zones within the flame.
A data set of propane jet fires is used to train and evaluate the different approaches.
arXiv Detail & Related papers (2021-07-07T19:52:52Z) - High-resolution Depth Maps Imaging via Attention-based Hierarchical
Multi-modal Fusion [84.24973877109181]
We propose a novel attention-based hierarchical multi-modal fusion network for guided DSR.
We show that our approach outperforms state-of-the-art methods in terms of reconstruction accuracy, running speed and memory efficiency.
arXiv Detail & Related papers (2021-04-04T03:28:33Z) - From Static to Dynamic Prediction: Wildfire Risk Assessment Based on
Multiple Environmental Factors [69.9674326582747]
Wildfire is one of the biggest disasters that frequently occurs on the west coast of the United States.
We propose static and dynamic prediction models to analyze and assess the areas with high wildfire risks in California.
arXiv Detail & Related papers (2021-03-14T17:56:17Z) - Dynamic Community Detection into Analyzing of Wildfires Events [55.72431452586636]
We investigate the information that dynamic community structures reveal about the dynamics of wildfires.
Experiments with the MODIS dataset of fire events in the Amazon basing were conducted.
Our results show that the dynamic communities can reveal wildfire patterns observed throughout the year.
arXiv Detail & Related papers (2020-11-02T17:31:47Z) - Unmanned Aerial Systems for Wildland and Forest Fires [0.0]
Wildfires represent an important natural risk causing economic losses, human death and important environmental damage.
Research has been conducted towards the development of dedicated solutions for wildland and forest fire assistance and fighting.
Unmanned Aerial Systems (UAS) have proven to be useful due to their maneuverability.
arXiv Detail & Related papers (2020-04-28T23:01:12Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.