Multispectral Indices for Wildfire Management
- URL: http://arxiv.org/abs/2309.01751v2
- Date: Mon, 10 Feb 2025 16:05:55 GMT
- Title: Multispectral Indices for Wildfire Management
- Authors: Afonso Oliveira, João P. Matos-Carvalho, Filipe Moutinho, Nuno Fachada,
- Abstract summary: The paper examines the application of multispectral aerial and satellite imagery in wildfire management.
It emphasizes the identification and analysis of key factors influencing wildfire behavior, such as combustible vegetation and water features.
- Score: 0.0
- License:
- Abstract: The increasing frequency and severity of wildfires requires advanced methods for effective surveillance and management. Traditional ground-based observation techniques often struggle to adapt to rapidly changing fire behavior and environmental conditions. This paper examines the application of multispectral aerial and satellite imagery in wildfire management, emphasizing the identification and analysis of key factors influencing wildfire behavior, such as combustible vegetation and water features. Through a comprehensive review of current literature and the presentation of two practical case studies, we assess various multispectral indices and evaluate their effectiveness in extracting critical environmental attributes essential for wildfire prevention and management. Our case studies highlight several indices as particularly effective for segmentation and extraction: NVDI for vegetation, MNDWI for water features, and MSR for artificial structures. These indices significantly enhance wildfire data processing, thereby supporting improved monitoring and response strategies.
Related papers
- Bushfire Severity Modelling and Future Trend Prediction Across Australia: Integrating Remote Sensing and Machine Learning [0.43012765978447565]
This study presents an in-depth analysis of bushfire severity in Australia over the last twelve years.
By utilizing Landsat imagery and integrating spectral indices like NDVI, NBR, and Burn Index, along with topographical and climatic factors, we developed a robust predictive model.
The model achieved high accuracy, 86.13%, demonstrating its effectiveness in predicting fire severity across diverse Australian ecosystems.
arXiv Detail & Related papers (2024-09-18T04:57:48Z) - Enhancing Tree Type Detection in Forest Fire Risk Assessment: Multi-Stage Approach and Color Encoding with Forest Fire Risk Evaluation Framework for UAV Imagery [0.0]
Forest fires pose a significant threat to ecosystems, economies, and human health worldwide.
Unmanned Aerial Vehicles equipped with advanced computer vision algorithms offer a promising solution for forest fire detection and assessment.
We optimize an integrated forest fire risk assessment framework using UAVs and multi-stage object detection algorithms.
arXiv Detail & Related papers (2024-07-27T05:52:31Z) - Variable-Agnostic Causal Exploration for Reinforcement Learning [56.52768265734155]
We introduce a novel framework, Variable-Agnostic Causal Exploration for Reinforcement Learning (VACERL)
Our approach automatically identifies crucial observation-action steps associated with key variables using attention mechanisms.
It constructs the causal graph connecting these steps, which guides the agent towards observation-action pairs with greater causal influence on task completion.
arXiv Detail & Related papers (2024-07-17T09:45:27Z) - Decision support system for Forest fire management using Ontology with Big Data and LLMs [0.8668211481067458]
Fire weather indices, which assess wildfire risk and predict resource demands, are vital.
With the rise of sensor networks in fields like healthcare and environmental monitoring, semantic sensor networks are increasingly used to gather climatic data.
This paper discusses using Apache Spark for early forest fire detection, enhancing fire risk prediction with meteorological and geographical data.
arXiv Detail & Related papers (2024-05-18T17:30:30Z) - A Synergistic Approach to Wildfire Prevention and Management Using AI, ML, and 5G Technology in the United States [44.99833362998488]
This research investigates proactive methods for detecting and handling wildfires in the United States.
The specific objective of this research covers proactive detection and prevention of wildfires using advanced technology.
Various methods, such as AI-enabled remote sensing and 5G-based active monitoring, can enhance proactive wildfire detection and management.
arXiv Detail & Related papers (2024-02-27T04:09:30Z) - Sequential Attention Source Identification Based on Feature
Representation [88.05527934953311]
This paper proposes a sequence-to-sequence based localization framework called Temporal-sequence based Graph Attention Source Identification (TGASI) based on an inductive learning idea.
It's worth mentioning that the inductive learning idea ensures that TGASI can detect the sources in new scenarios without knowing other prior knowledge.
arXiv Detail & Related papers (2023-06-28T03:00:28Z) - Neuroevolution-based Classifiers for Deforestation Detection in Tropical
Forests [62.997667081978825]
Millions of hectares of tropical forests are lost every year due to deforestation or degradation.
Monitoring and deforestation detection programs are in use, in addition to public policies for the prevention and punishment of criminals.
This paper proposes the use of pattern classifiers based on neuroevolution technique (NEAT) in tropical forest deforestation detection tasks.
arXiv Detail & Related papers (2022-08-23T16:04:12Z) - Mitigating Greenhouse Gas Emissions Through Generative Adversarial
Networks Based Wildfire Prediction [11.484140660635239]
We develop a deep learning based data augmentation approach for wildfire risk prediction.
By adopting the proposed method, we can take preventive strategies of wildfire mitigation to reduce global GHG emissions.
arXiv Detail & Related papers (2021-08-20T00:36:30Z) - From Static to Dynamic Prediction: Wildfire Risk Assessment Based on
Multiple Environmental Factors [69.9674326582747]
Wildfire is one of the biggest disasters that frequently occurs on the west coast of the United States.
We propose static and dynamic prediction models to analyze and assess the areas with high wildfire risks in California.
arXiv Detail & Related papers (2021-03-14T17:56:17Z) - Dynamic Community Detection into Analyzing of Wildfires Events [55.72431452586636]
We investigate the information that dynamic community structures reveal about the dynamics of wildfires.
Experiments with the MODIS dataset of fire events in the Amazon basing were conducted.
Our results show that the dynamic communities can reveal wildfire patterns observed throughout the year.
arXiv Detail & Related papers (2020-11-02T17:31:47Z) - Unmanned Aerial Systems for Wildland and Forest Fires [0.0]
Wildfires represent an important natural risk causing economic losses, human death and important environmental damage.
Research has been conducted towards the development of dedicated solutions for wildland and forest fire assistance and fighting.
Unmanned Aerial Systems (UAS) have proven to be useful due to their maneuverability.
arXiv Detail & Related papers (2020-04-28T23:01:12Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.