論文の概要: No-Regret Caching with Noisy Request Estimates
- arxiv url: http://arxiv.org/abs/2309.02055v1
- Date: Tue, 5 Sep 2023 08:57:35 GMT
- ステータス: 処理完了
- システム内更新日: 2023-09-06 15:42:33.864522
- Title: No-Regret Caching with Noisy Request Estimates
- Title(参考訳): ノイズを考慮したノンリグレットキャッシング
- Authors: Younes Ben Mazziane, Francescomaria Faticanti, Giovanni Neglia, Sara
Alouf
- Abstract要約: 要求推定値がノイズである場合,従来のFPLの変種であるNoisy-Follow-the-Perturbed-Leader (NFPL)アルゴリズムを提案する。
提案手法は,要求推定器の特定の条件下でのサブ線形後悔を有することを示す。
- 参考スコア(独自算出の注目度): 12.603423174002254
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Online learning algorithms have been successfully used to design caching
policies with regret guarantees. Existing algorithms assume that the cache
knows the exact request sequence, but this may not be feasible in high load
and/or memory-constrained scenarios, where the cache may have access only to
sampled requests or to approximate requests' counters. In this paper, we
propose the Noisy-Follow-the-Perturbed-Leader (NFPL) algorithm, a variant of
the classic Follow-the-Perturbed-Leader (FPL) when request estimates are noisy,
and we show that the proposed solution has sublinear regret under specific
conditions on the requests estimator. The experimental evaluation compares the
proposed solution against classic caching policies and validates the proposed
approach under both synthetic and real request traces.
- Abstract(参考訳): オンライン学習アルゴリズムは、後悔の保証のあるキャッシュポリシーの設計に成功している。
既存のアルゴリズムでは、キャッシュが正確なリクエストシーケンスを知っていると仮定しているが、高負荷やメモリ制限されたシナリオでは、キャッシュがサンプリングされたリクエストのみにアクセスしたり、ほぼリクエストのカウンタにアクセスできない可能性がある。
本稿では,リクエスト推定がノイズである場合,従来のFPLの変種であるNoisy-Follow-the-Perturbed-Leader (NFPL)アルゴリズムを提案する。
実験により,提案手法を古典的なキャッシュポリシと比較し,提案手法を合成および実要求トレースの両方で検証した。
関連論文リスト
- On the Regret of Coded Caching with Adversarial Requests [7.171698704686835]
オンライン学習フレームワークにおいて、よく知られた符号化キャッシュ問題について検討し、リクエストが順次到着する。
本稿では、Follow-The-Perturbed-Leader原則に基づくキャッシュポリシーを導入し、任意の時間水平線Tにおいて、算術的O(sqrt(T))に対するサブ線形後悔を実現することを示す。
論文 参考訳(メタデータ) (2024-09-19T01:13:03Z) - An Online Gradient-Based Caching Policy with Logarithmic Complexity and Regret Guarantees [13.844896723580858]
我々は、対数計算の複雑さを突破するグラデーションベースのオンラインキャッシュポリシーを新たに導入する。
この進歩により、何百万ものリクエストやアイテムを伴って、大規模で現実世界のトレース上でポリシーをテストすることができます。
論文 参考訳(メタデータ) (2024-05-02T13:11:53Z) - Mitigating LLM Hallucinations via Conformal Abstention [70.83870602967625]
我々は,大言語モデルが一般ドメインでの応答をいつ無視すべきかを決定するための,原則化された手順を開発する。
我々は、幻覚率(エラー率)の厳密な理論的保証の恩恵を受けるため、共形予測手法を活用して、禁忌手順を開発する。
実験によって得られた共形禁忌法は, 種々の閉書, オープンドメイン生成質問応答データセットに, 幻覚率を確実に拘束する。
論文 参考訳(メタデータ) (2024-04-04T11:32:03Z) - Likelihood Ratio Confidence Sets for Sequential Decision Making [51.66638486226482]
確率に基づく推論の原理を再検討し、確率比を用いて妥当な信頼シーケンスを構築することを提案する。
本手法は, 精度の高い問題に特に適している。
提案手法は,オンライン凸最適化への接続に光を当てることにより,推定器の最適シーケンスを確実に選択する方法を示す。
論文 参考訳(メタデータ) (2023-11-08T00:10:21Z) - Optimistic No-regret Algorithms for Discrete Caching [6.182368229968862]
楽観的な学習の文脈において,ファイル全体を限られた容量でキャッシュに格納するという問題を体系的に検討する。
予測支援オンラインキャッシュのための普遍的な下位境界を提供し、様々なパフォーマンス・複雑さのトレードオフを持つ一連のポリシーを設計する。
我々の結果は、最近提案されたすべてのオンラインキャッシュポリシーを大幅に改善し、オラクルの予測を活用できないため、後悔する$O(sqrtT)しか提供できません。
論文 参考訳(メタデータ) (2022-08-15T09:18:41Z) - Intelligent Request Strategy Design in Recommender System [76.90734681369156]
我々は、Intelligent Request Strategy Design(IRSD)というエッジインテリジェンスの新しい学習タスクを構想する。
IRSDは、ユーザのリアルタイムな意図に基づいて、リクエスト挿入の適切なタイミングを決定することにより、ウォーターフォールRSの有効性を向上させることを目的としている。
我々は、アップリフトベースのOn-edge Smart Request Framework(AdaRequest)という、適応的な要求挿入戦略の新しいパラダイムを提案する。
論文 参考訳(メタデータ) (2022-06-23T16:51:38Z) - Online Caching with no Regret: Optimistic Learning via Recommendations [15.877673959068458]
ファイル要求の予測を含むFTRL(Follow-the-Regularized-Leader)フレームワークを構築した。
フレームワークを拡張して、多くが利用可能な場合に最適な要求予測器を学習し、利用します。
提案した楽観的な学習キャッシュポリシが,完全予測のためのサブゼロ性能損失(regret)を達成できることを実証する。
論文 参考訳(メタデータ) (2022-04-20T09:29:47Z) - Accelerating Deep Learning Classification with Error-controlled
Approximate-key Caching [72.50506500576746]
我々は、近似キーキャッシングと名付けた新しいキャッシングパラダイムを提案する。
近似キャッシュはDL推論の負荷を軽減し、システムのスループットを向上するが、近似誤差を導入する。
我々は古典的なLRUと理想的なキャッシュのキャッシュシステム性能を解析的にモデル化し、期待される性能のトレース駆動評価を行い、提案手法の利点を最先端の類似キャッシュと比較した。
論文 参考訳(メタデータ) (2021-12-13T13:49:11Z) - Local policy search with Bayesian optimization [73.0364959221845]
強化学習は、環境との相互作用によって最適な政策を見つけることを目的としている。
局所探索のための政策勾配は、しばしばランダムな摂動から得られる。
目的関数の確率モデルとその勾配を用いたアルゴリズムを開発する。
論文 参考訳(メタデータ) (2021-06-22T16:07:02Z) - Variance-Reduced Off-Policy Memory-Efficient Policy Search [61.23789485979057]
政治政策の最適化は強化学習において難しい問題である。
オフポリシーアルゴリズムはメモリ効率が高く、オフポリシーサンプルから学ぶことができる。
論文 参考訳(メタデータ) (2020-09-14T16:22:46Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。