論文の概要: Traffic Light Recognition using Convolutional Neural Networks: A Survey
- arxiv url: http://arxiv.org/abs/2309.02158v1
- Date: Tue, 5 Sep 2023 11:50:38 GMT
- ステータス: 処理完了
- システム内更新日: 2023-09-06 15:04:13.773582
- Title: Traffic Light Recognition using Convolutional Neural Networks: A Survey
- Title(参考訳): 畳み込みニューラルネットワークを用いた交通光の認識:サーベイ
- Authors: Svetlana Pavlitska, Nico Lambing, Ashok Kumar Bangaru and J. Marius
Z\"ollner
- Abstract要約: 我々は畳み込みニューラルネットワーク(CNN)を用いた交通信号認識手法の総合的な調査と分析を行う。
基盤となるアーキテクチャに基づいて、メソッドを3つの主要なグループにクラスタ化します。
各クラスタで最も重要な作業について説明し、データセットの使用方法について議論し、研究ギャップを特定します。
- 参考スコア(独自算出の注目度): 4.451479907610764
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Real-time traffic light recognition is essential for autonomous driving. Yet,
a cohesive overview of the underlying model architectures for this task is
currently missing. In this work, we conduct a comprehensive survey and analysis
of traffic light recognition methods that use convolutional neural networks
(CNNs). We focus on two essential aspects: datasets and CNN architectures.
Based on an underlying architecture, we cluster methods into three major
groups: (1) modifications of generic object detectors which compensate for
specific task characteristics, (2) multi-stage approaches involving both
rule-based and CNN components, and (3) task-specific single-stage methods. We
describe the most important works in each cluster, discuss the usage of the
datasets, and identify research gaps.
- Abstract(参考訳): 自動運転にはリアルタイム交通光認識が不可欠である。
しかし、このタスクの基盤となるモデルアーキテクチャの密集した概要が現在欠けている。
本研究では,畳み込みニューラルネットワーク(cnns)を用いた交通光認識手法の包括的調査と分析を行う。
データセットとcnnアーキテクチャという2つの重要な側面に焦点を当てています。
基礎となるアーキテクチャに基づいて,(1)特定のタスク特性を補償する汎用オブジェクト検出器の修正,(2)ルールベースとcnnコンポーネントの両方を含む多段階アプローチ,(3)タスク固有の単一ステージメソッドの3つのグループにメソッドを分類した。
各クラスタで最も重要な作業について説明し、データセットの利用について話し、研究のギャップを特定します。
関連論文リスト
- RepVF: A Unified Vector Fields Representation for Multi-task 3D Perception [64.80760846124858]
本稿では,様々な知覚タスクの表現を調和させる新しい統一表現RepVFを提案する。
RepVFは、ベクトル場を通じてシーン内の異なるターゲットの構造を特徴付け、シングルヘッドでマルチタスクの学習モデルを可能にする。
RepVF 上に構築された RFTR は,タスク間の固有性を利用したネットワークである。
論文 参考訳(メタデータ) (2024-07-15T16:25:07Z) - Simultaneous Clutter Detection and Semantic Segmentation of Moving
Objects for Automotive Radar Data [12.96486891333286]
レーダセンサは、自動運転車の環境認識システムにおいて重要な部分である。
レーダーポイント雲の処理における最初のステップの1つは、しばしば乱れの検出である。
もう一つの一般的な目的は、移動道路利用者のセマンティックセグメンテーションである。
我々は,RadarScenesデータセットのセマンティックセマンティックセグメンテーションにおいて,我々の設定が極めて効果的であることを示し,既存のネットワークよりも優れていることを示す。
論文 参考訳(メタデータ) (2023-11-13T11:29:38Z) - Provable Guarantees for Nonlinear Feature Learning in Three-Layer Neural
Networks [49.808194368781095]
3層ニューラルネットワークは,2層ネットワークよりも特徴学習能力が豊富であることを示す。
この研究は、特徴学習体制における2層ネットワーク上の3層ニューラルネットワークの証明可能なメリットを理解するための前進である。
論文 参考訳(メタデータ) (2023-05-11T17:19:30Z) - Graph-based Topology Reasoning for Driving Scenes [102.35885039110057]
TopoNetは、従来の知覚タスクを超えてトラフィック知識を抽象化できる最初のエンドツーエンドフレームワークである。
TopoNetを,難解なシーン理解ベンチマークOpenLane-V2で評価した。
論文 参考訳(メタデータ) (2023-04-11T15:23:29Z) - 3DMODT: Attention-Guided Affinities for Joint Detection & Tracking in 3D
Point Clouds [95.54285993019843]
本稿では,3次元点雲における複数物体の同時検出と追跡手法を提案する。
本モデルでは,複数のフレームを用いた時間情報を利用してオブジェクトを検出し,一つのネットワーク上で追跡する。
論文 参考訳(メタデータ) (2022-11-01T20:59:38Z) - A Hierarchical Terminal Recognition Approach based on Network Traffic
Analysis [0.48298211429517085]
本稿では,グリッドデータの詳細を適用した階層型端末認識手法を提案する。
我々はグリッドデータをセグメント化して2段階のモデル構造を構築した。
特徴の選定と再構築により、3つのアルゴリズムを組み合わせて端末の型を正確に識別する。
論文 参考訳(メタデータ) (2022-04-16T05:33:01Z) - Improving Lidar-Based Semantic Segmentation of Top-View Grid Maps by
Learning Features in Complementary Representations [3.0413873719021995]
我々は、自律運転の文脈において、スパースで単発のLiDAR測定から意味情報を予測するための新しい方法を提案する。
このアプローチは、トップビューグリッドマップのセマンティックセグメンテーションを改善することを目的としている。
各表現に対して、セマンティック情報を効果的に抽出するために、調整されたディープラーニングアーキテクチャが開発された。
論文 参考訳(メタデータ) (2022-03-02T14:49:51Z) - Multi-Task Hierarchical Learning Based Network Traffic Analytics [18.04195092141071]
約1.3Mのラベル付きフローを含む3つのオープンデータセットを提示する。
我々は、マルウェア検出とアプリケーション分類の両方を含む、ネットワークトラフィック分析の幅広い側面に焦点を当てる。
成長を続けるにつれて、データセットはAI駆動の再現可能なネットワークフロー分析研究の共通基盤として機能することを期待しています。
論文 参考訳(メタデータ) (2021-06-05T02:25:59Z) - A Simple and Efficient Multi-task Network for 3D Object Detection and
Road Understanding [20.878931360708343]
シンプルで効率的なマルチタスクネットワークを通じて、すべての知覚タスクを実行できることを示します。
提案するネットワークであるLidarMTLは、生のLiDAR点雲を入力とし、3次元物体検出と道路理解のための6つの知覚出力を予測する。
論文 参考訳(メタデータ) (2021-03-06T08:00:26Z) - PC-RGNN: Point Cloud Completion and Graph Neural Network for 3D Object
Detection [57.49788100647103]
LiDARベースの3Dオブジェクト検出は、自動運転にとって重要なタスクです。
現在のアプローチでは、遠方および閉ざされた物体の偏りと部分的な点雲に苦しむ。
本稿では,この課題を2つの解決法で解決する新しい二段階アプローチ,pc-rgnnを提案する。
論文 参考訳(メタデータ) (2020-12-18T18:06:43Z) - Seismic horizon detection with neural networks [62.997667081978825]
本稿では,複数の実地震立方体上での地平線検出にバイナリセグメンテーションを適用し,予測モデルのキューブ間一般化に着目したオープンソースの研究である。
本研究の主な貢献は,複数実地震立方体における地平線検出にバイナリセグメンテーションを適用し,予測モデルのキューブ間一般化に着目したオープンソースの研究である。
論文 参考訳(メタデータ) (2020-01-10T11:30:50Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。