論文の概要: Personalized Federated Deep Reinforcement Learning-based Trajectory
Optimization for Multi-UAV Assisted Edge Computing
- arxiv url: http://arxiv.org/abs/2309.02193v1
- Date: Tue, 5 Sep 2023 12:54:40 GMT
- ステータス: 処理完了
- システム内更新日: 2023-09-06 14:41:11.979794
- Title: Personalized Federated Deep Reinforcement Learning-based Trajectory
Optimization for Multi-UAV Assisted Edge Computing
- Title(参考訳): 多UAV支援エッジコンピューティングのための個人化深層強化学習に基づく軌道最適化
- Authors: Zhengrong Song, Chuan Ma, Ming Ding, Howard H. Yang, Yuwen Qian,
Xiangwei Zhou
- Abstract要約: UAVはエッジコンピューティング環境でインテリジェントなサーバとして機能し、通信システムのスループットを最大化するために飛行軌道を最適化する。
深部強化学習(DRL)に基づく軌道最適化アルゴリズムは、複雑な地形特徴と不十分な訓練データにより、訓練性能が低下する可能性がある。
本研究は,マルチUAV軌道最適化のための新しい手法,すなわちパーソナライズされた深部強化学習(PF-DRL)を提案する。
- 参考スコア(独自算出の注目度): 22.09756306579992
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In the era of 5G mobile communication, there has been a significant surge in
research focused on unmanned aerial vehicles (UAVs) and mobile edge computing
technology. UAVs can serve as intelligent servers in edge computing
environments, optimizing their flight trajectories to maximize communication
system throughput. Deep reinforcement learning (DRL)-based trajectory
optimization algorithms may suffer from poor training performance due to
intricate terrain features and inadequate training data. To overcome this
limitation, some studies have proposed leveraging federated learning (FL) to
mitigate the data isolation problem and expedite convergence. Nevertheless, the
efficacy of global FL models can be negatively impacted by the high
heterogeneity of local data, which could potentially impede the training
process and even compromise the performance of local agents. This work proposes
a novel solution to address these challenges, namely personalized federated
deep reinforcement learning (PF-DRL), for multi-UAV trajectory optimization.
PF-DRL aims to develop individualized models for each agent to address the data
scarcity issue and mitigate the negative impact of data heterogeneity.
Simulation results demonstrate that the proposed algorithm achieves superior
training performance with faster convergence rates, and improves service
quality compared to other DRL-based approaches.
- Abstract(参考訳): 5g移動通信の時代には、無人航空機(uavs)とモバイルエッジコンピューティング技術に焦点を当てた研究が大幅に急増している。
UAVはエッジコンピューティング環境でインテリジェントなサーバとして機能し、通信システムのスループットを最大化するために飛行軌道を最適化する。
深層強化学習(drl)に基づく軌道最適化アルゴリズムは、複雑な地形特徴と不適切な訓練データのために訓練性能が低下する可能性がある。
この制限を克服するために、データ分離問題を緩和し、収束を早めるために連邦学習(FL)を活用することを提案する研究もある。
それにもかかわらず、グローバルflモデルの有効性は、ローカルデータの高い不均一性によって否定的に影響され、これは訓練過程を阻害し、ローカルエージェントのパフォーマンスを損なう可能性がある。
本研究は,多UAV軌道最適化のためのPF-DRLという,これらの課題に対処する新しい手法を提案する。
PF-DRLは、データ不足問題に対処し、データ不均一性の負の影響を軽減するために、各エージェントの個別化モデルを開発することを目的としている。
シミュレーションの結果,提案アルゴリズムはより高速な収束率で優れた訓練性能を達成し,他のDRLベース手法と比較してサービス品質の向上を図っている。
関連論文リスト
- Wireless Federated Learning over UAV-enabled Integrated Sensing and Communication [2.8203310972866382]
本稿では,無人航空機(UAV)を利用した統合型統合学習(FL)における新しい遅延最適化問題について検討する。
ベンチマーク方式と比較して,システム遅延を最大68.54%削減し,高品質な近似解を求めるため,単純かつ効率的な反復アルゴリズムを開発した。
論文 参考訳(メタデータ) (2024-11-01T14:25:24Z) - Heterogeneity-Aware Resource Allocation and Topology Design for Hierarchical Federated Edge Learning [9.900317349372383]
Federated Learning (FL)は、モバイルデバイス上で機械学習モデルをトレーニングするためのプライバシー保護フレームワークを提供する。
従来のFLアルゴリズム、例えばFedAvgはこれらのデバイスに重い通信負荷を課す。
エッジデバイスをエッジサーバに接続し,エッジサーバをピアツーピア(P2P)エッジバックホールを介して相互接続する2層HFELシステムを提案する。
我々の目標は、戦略的資源配分とトポロジ設計により、HFELシステムの訓練効率を向上させることである。
論文 参考訳(メタデータ) (2024-09-29T01:48:04Z) - UAV-enabled Collaborative Beamforming via Multi-Agent Deep Reinforcement Learning [79.16150966434299]
本稿では,UAVを用いた協調ビームフォーミング多目的最適化問題 (UCBMOP) を定式化し,UAVの伝送速度を最大化し,全UAVのエネルギー消費を最小化する。
ヘテロジニアス・エージェント・信頼領域ポリシー最適化(HATRPO)を基本フレームワークとし,改良されたHATRPOアルゴリズム,すなわちHATRPO-UCBを提案する。
論文 参考訳(メタデータ) (2024-04-11T03:19:22Z) - Filling the Missing: Exploring Generative AI for Enhanced Federated
Learning over Heterogeneous Mobile Edge Devices [72.61177465035031]
ローカルデータのFIMI(FIlling the MIssing)部分を活用することにより,これらの課題に対処する,AIを活用した創発的なフェデレーション学習を提案する。
実験の結果,FIMIはデバイス側エネルギーの最大50%を節約し,目標とするグローバルテスト精度を達成できることがわかった。
論文 参考訳(メタデータ) (2023-10-21T12:07:04Z) - A Multi-Head Ensemble Multi-Task Learning Approach for Dynamical
Computation Offloading [62.34538208323411]
共有バックボーンと複数の予測ヘッド(PH)を組み合わせたマルチヘッドマルチタスク学習(MEMTL)手法を提案する。
MEMTLは、追加のトレーニングデータを必要とせず、推測精度と平均平方誤差の両方でベンチマーク手法より優れている。
論文 参考訳(メタデータ) (2023-09-02T11:01:16Z) - Analysis and Optimization of Wireless Federated Learning with Data
Heterogeneity [72.85248553787538]
本稿では、データの不均一性を考慮した無線FLの性能解析と最適化と、無線リソース割り当てについて述べる。
ロス関数の最小化問題を、長期エネルギー消費と遅延の制約の下で定式化し、クライアントスケジューリング、リソース割り当て、ローカルトレーニングエポック数(CRE)を共同で最適化する。
実世界のデータセットの実験により、提案アルゴリズムは学習精度とエネルギー消費の点で他のベンチマークよりも優れていることが示された。
論文 参考訳(メタデータ) (2023-08-04T04:18:01Z) - Integrated Sensing, Computation, and Communication for UAV-assisted
Federated Edge Learning [52.7230652428711]
フェデレーションエッジ学習(FEEL)は、エッジデバイスとサーバ間の定期的な通信を通じて、プライバシ保護モデルトレーニングを可能にする。
無人航空機(UAV)搭載エッジデバイスは、効率的なデータ収集における柔軟性と移動性のため、FEELにとって特に有利である。
論文 参考訳(メタデータ) (2023-06-05T16:01:33Z) - Muti-Agent Proximal Policy Optimization For Data Freshness in
UAV-assisted Networks [4.042622147977782]
収集したデータが時間に敏感な場合に注目し,そのタイムラインを維持することが重要である。
我々の目標は、UAVの軌道を最適に設計することであり、グローバル・エイジ・オブ・アップデート(AoU)のような訪問するIoTデバイスのサブセットを最小化することである。
論文 参考訳(メタデータ) (2023-03-15T15:03:09Z) - A Distributed Deep Reinforcement Learning Technique for Application
Placement in Edge and Fog Computing Environments [31.326505188936746]
フォグ/エッジコンピューティング環境において, DRL(Deep Reinforcement Learning)に基づく配置技術が提案されている。
IMPortance weighted Actor-Learner Architectures (IMPALA) に基づくアクタ批判に基づく分散アプリケーション配置手法を提案する。
論文 参考訳(メタデータ) (2021-10-24T11:25:03Z) - Distributed CNN Inference on Resource-Constrained UAVs for Surveillance
Systems: Design and Optimization [43.9909417652678]
無人航空機(UAV)は、広い地域をカバーし、困難で危険な目標地域にアクセスする能力のため、ここ数年で大きな関心を集めている。
コンピュータビジョンと機械学習の進歩により、UAVは幅広いソリューションやアプリケーションに採用されている。
ディープニューラルネットワーク(DNN)は、それらがオンボードで実行されるのを防ぐ、より深く複雑なモデルに向かって進んでいる。
論文 参考訳(メタデータ) (2021-05-23T20:19:43Z) - Distributed Multi-agent Meta Learning for Trajectory Design in Wireless
Drone Networks [151.27147513363502]
本稿では,動的無線ネットワーク環境で動作するエネルギー制約型ドローン群に対する軌道設計の問題点について検討する。
値ベース強化学習(VDRL)ソリューションとメタトレイン機構を提案する。
論文 参考訳(メタデータ) (2020-12-06T01:30:12Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。