Empirical Review of Smart Contract and DeFi Security: Vulnerability
Detection and Automated Repair
- URL: http://arxiv.org/abs/2309.02391v2
- Date: Wed, 6 Sep 2023 16:03:39 GMT
- Title: Empirical Review of Smart Contract and DeFi Security: Vulnerability
Detection and Automated Repair
- Authors: Peng Qian, Rui Cao, Zhenguang Liu, Wenqing Li, Ming Li, Lun Zhang,
Yufeng Xu, Jianhai Chen, Qinming He
- Abstract summary: Decentralized Finance (DeFi) is emerging as a peer-to-peer financial ecosystem.
smart contracts hold a massive amount of value, making them an attractive target for attacks.
This paper reviews the progress made in the field of smart contract and DeFi security from the perspective of both vulnerability detection and automated repair.
- Score: 36.46679501556185
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Decentralized Finance (DeFi) is emerging as a peer-to-peer financial
ecosystem, enabling participants to trade products on a permissionless
blockchain. Built on blockchain and smart contracts, the DeFi ecosystem has
experienced explosive growth in recent years. Unfortunately, smart contracts
hold a massive amount of value, making them an attractive target for attacks.
So far, attacks against smart contracts and DeFi protocols have resulted in
billions of dollars in financial losses, severely threatening the security of
the entire DeFi ecosystem. Researchers have proposed various security tools for
smart contracts and DeFi protocols as countermeasures. However, a comprehensive
investigation of these efforts is still lacking, leaving a crucial gap in our
understanding of how to enhance the security posture of the smart contract and
DeFi landscape.
To fill the gap, this paper reviews the progress made in the field of smart
contract and DeFi security from the perspective of both vulnerability detection
and automated repair. First, we analyze the DeFi smart contract security issues
and challenges. Specifically, we lucubrate various DeFi attack incidents and
summarize the attacks into six categories. Then, we present an empirical study
of 42 state-of-the-art techniques that can detect smart contract and DeFi
vulnerabilities. In particular, we evaluate the effectiveness of traditional
smart contract bug detection tools in analyzing complex DeFi protocols.
Additionally, we investigate 8 existing automated repair tools for smart
contracts and DeFi protocols, providing insight into their advantages and
disadvantages. To make this work useful for as wide of an audience as possible,
we also identify several open issues and challenges in the DeFi ecosystem that
should be addressed in the future.
Related papers
- Vulnerability Detection in Ethereum Smart Contracts via Machine Learning: A Qualitative Analysis [0.0]
We analyze the state of the art in machine-learning vulnerability detection for smart contracts.
We discuss best practices to enhance the accuracy, scope, and efficiency of vulnerability detection in smart contracts.
arXiv Detail & Related papers (2024-07-26T10:09:44Z) - Versioned Analysis of Software Quality Indicators and Self-admitted Technical Debt in Ethereum Smart Contracts with Ethstractor [2.052808596154225]
This paper proposes Ethstractor, the first smart contract collection tool for gathering a dataset of versioned smart contracts.
The collected dataset is then used to evaluate the reliability of code metrics as indicators of vulnerabilities in smart contracts.
arXiv Detail & Related papers (2024-07-22T18:27:29Z) - Dual-view Aware Smart Contract Vulnerability Detection for Ethereum [5.002702845720439]
We propose a Dual-view Aware Smart Contract Vulnerability Detection Framework named DVDet.
The framework initially converts the source code and bytecode of smart contracts into weighted graphs and control flow sequences.
Comprehensive experiments on the dataset show that our method outperforms others in detecting vulnerabilities.
arXiv Detail & Related papers (2024-06-29T06:47:51Z) - A security framework for Ethereum smart contracts [13.430752634838539]
This article presents ESAF, a framework for analysis of smart contracts.
It aims to unify and facilitate the task of analyzing smart contract vulnerabilities.
It can be used as a persistent security monitoring tool for a set of target contracts as well as a classic vulnerability analysis tool among other uses.
arXiv Detail & Related papers (2024-02-05T22:14:21Z) - Vulnerability Scanners for Ethereum Smart Contracts: A Large-Scale Study [44.25093111430751]
In 2023 alone, such vulnerabilities led to substantial financial losses exceeding a billion of US dollars.
Various tools have been developed to detect and mitigate vulnerabilities in smart contracts.
This study investigates the gap between the effectiveness of existing security scanners and the vulnerabilities that still persist in practice.
arXiv Detail & Related papers (2023-12-27T11:26:26Z) - Formally Verifying a Real World Smart Contract [52.30656867727018]
We search for a tool capable of formally verifying a real-world smart contract written in a recent version of Solidity.
In this article, we present our search for a tool capable of formally verifying a real-world smart contract written in a recent version of Solidity.
arXiv Detail & Related papers (2023-07-05T14:30:21Z) - Surveillance Face Presentation Attack Detection Challenge [68.06719263243806]
Face Anti-spoofing (FAS) is essential to secure face recognition systems from various physical attacks.
We collect a large-scale Surveillance High-Fidelity Mask (SuHiFiMask)
SuHiFiMask contains $10,195$ videos from $101$ subjects of different age groups, which are collected by $7$ mainstream surveillance cameras.
We organize a face presentation attack detection challenge in surveillance scenarios.
arXiv Detail & Related papers (2023-04-15T15:23:19Z) - Smart Contract and DeFi Security Tools: Do They Meet the Needs of
Practitioners? [10.771021805354911]
Attacks targeting smart contracts are increasing, causing an estimated $6.45 billion in financial losses.
We aim to shed light on the effectiveness of automated security tools in identifying vulnerabilities that can lead to high-profile attacks.
Our findings reveal a stark reality: the tools could have prevented a mere 8% of the attacks in our dataset, amounting to $149 million out of the $2.3 billion in losses.
arXiv Detail & Related papers (2023-04-06T10:27:19Z) - Smart Contract Vulnerability Detection: From Pure Neural Network to
Interpretable Graph Feature and Expert Pattern Fusion [48.744359070088166]
Conventional smart contract vulnerability detection methods heavily rely on fixed expert rules.
Recent deep learning approaches alleviate this issue but fail to encode useful expert knowledge.
We develop automatic tools to extract expert patterns from the source code.
We then cast the code into a semantic graph to extract deep graph features.
arXiv Detail & Related papers (2021-06-17T07:12:13Z) - ESCORT: Ethereum Smart COntRacTs Vulnerability Detection using Deep
Neural Network and Transfer Learning [80.85273827468063]
Existing machine learning-based vulnerability detection methods are limited and only inspect whether the smart contract is vulnerable.
We propose ESCORT, the first Deep Neural Network (DNN)-based vulnerability detection framework for smart contracts.
We show that ESCORT achieves an average F1-score of 95% on six vulnerability types and the detection time is 0.02 seconds per contract.
arXiv Detail & Related papers (2021-03-23T15:04:44Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.