A security framework for Ethereum smart contracts
- URL: http://arxiv.org/abs/2402.03555v1
- Date: Mon, 5 Feb 2024 22:14:21 GMT
- Title: A security framework for Ethereum smart contracts
- Authors: Antonio López Vivar, Ana Lucila Sandoval Orozco, Luis Javier García Villalba,
- Abstract summary: This article presents ESAF, a framework for analysis of smart contracts.
It aims to unify and facilitate the task of analyzing smart contract vulnerabilities.
It can be used as a persistent security monitoring tool for a set of target contracts as well as a classic vulnerability analysis tool among other uses.
- Score: 13.430752634838539
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The use of blockchain and smart contracts have not stopped growing in recent years. Like all software that begins to expand its use, it is also beginning to be targeted by hackers who will try to exploit vulnerabilities in both the underlying technology and the smart contract code itself. While many tools already exist for analyzing vulnerabilities in smart contracts, the heterogeneity and variety of approaches and differences in providing the analysis data makes the learning curve for the smart contract developer steep. In this article the authors present ESAF (Ethereum Security Analysis Framework), a framework for analysis of smart contracts that aims to unify and facilitate the task of analyzing smart contract vulnerabilities which can be used as a persistent security monitoring tool for a set of target contracts as well as a classic vulnerability analysis tool among other uses.
Related papers
- Vulnerability Detection in Ethereum Smart Contracts via Machine Learning: A Qualitative Analysis [0.0]
We analyze the state of the art in machine-learning vulnerability detection for smart contracts.
We discuss best practices to enhance the accuracy, scope, and efficiency of vulnerability detection in smart contracts.
arXiv Detail & Related papers (2024-07-26T10:09:44Z) - Versioned Analysis of Software Quality Indicators and Self-admitted Technical Debt in Ethereum Smart Contracts with Ethstractor [2.052808596154225]
This paper proposes Ethstractor, the first smart contract collection tool for gathering a dataset of versioned smart contracts.
The collected dataset is then used to evaluate the reliability of code metrics as indicators of vulnerabilities in smart contracts.
arXiv Detail & Related papers (2024-07-22T18:27:29Z) - Dual-view Aware Smart Contract Vulnerability Detection for Ethereum [5.002702845720439]
We propose a Dual-view Aware Smart Contract Vulnerability Detection Framework named DVDet.
The framework initially converts the source code and bytecode of smart contracts into weighted graphs and control flow sequences.
Comprehensive experiments on the dataset show that our method outperforms others in detecting vulnerabilities.
arXiv Detail & Related papers (2024-06-29T06:47:51Z) - Vulnerabilities of smart contracts and mitigation schemes: A Comprehensive Survey [0.6554326244334866]
This paper presents a literature review combined with an experimental report that aims to assist developers in developing secure smarts.
It provides a list of frequent vulnerabilities and corresponding mitigation solutions.
It evaluates the community most widely used tools by executing and testing them on sample smart contracts.
arXiv Detail & Related papers (2024-03-28T19:36:53Z) - Contract Usage and Evolution in Android Mobile Applications [45.44831696628473]
We present the first large-scale empirical study on the presence and use of contracts in Android applications, written in Java or Kotlin.
We analyzed 2,390 Android applications from the F-Droid repository and processed more than 51,749 KLOC.
Our findings show that it would be desirable to have libraries that standardize contract specifications in Java and Kotlin.
arXiv Detail & Related papers (2024-01-25T15:36:49Z) - HasTEE+ : Confidential Cloud Computing and Analytics with Haskell [50.994023665559496]
Confidential computing enables the protection of confidential code and data in a co-tenanted cloud deployment using specialized hardware isolation units called Trusted Execution Environments (TEEs)
TEEs offer low-level C/C++-based toolchains that are susceptible to inherent memory safety vulnerabilities and lack language constructs to monitor explicit and implicit information-flow leaks.
We address the above with HasTEE+, a domain-specific language (cla) embedded in Haskell that enables programming TEEs in a high-level language with strong type-safety.
arXiv Detail & Related papers (2024-01-17T00:56:23Z) - Vulnerability Scanners for Ethereum Smart Contracts: A Large-Scale Study [44.25093111430751]
In 2023 alone, such vulnerabilities led to substantial financial losses exceeding a billion of US dollars.
Various tools have been developed to detect and mitigate vulnerabilities in smart contracts.
This study investigates the gap between the effectiveness of existing security scanners and the vulnerabilities that still persist in practice.
arXiv Detail & Related papers (2023-12-27T11:26:26Z) - Gradual Verification for Smart Contracts [0.4543820534430522]
Algos facilitate secure resource transactions through smart contracts, yet these digital agreements are prone to vulnerabilities.
Traditional verification techniques fall short in providing comprehensive security assurances.
This paper introduces an incremental approach: gradual verification.
arXiv Detail & Related papers (2023-11-22T12:42:26Z) - Formally Verifying a Real World Smart Contract [52.30656867727018]
We search for a tool capable of formally verifying a real-world smart contract written in a recent version of Solidity.
In this article, we present our search for a tool capable of formally verifying a real-world smart contract written in a recent version of Solidity.
arXiv Detail & Related papers (2023-07-05T14:30:21Z) - Smart Contract Vulnerability Detection: From Pure Neural Network to
Interpretable Graph Feature and Expert Pattern Fusion [48.744359070088166]
Conventional smart contract vulnerability detection methods heavily rely on fixed expert rules.
Recent deep learning approaches alleviate this issue but fail to encode useful expert knowledge.
We develop automatic tools to extract expert patterns from the source code.
We then cast the code into a semantic graph to extract deep graph features.
arXiv Detail & Related papers (2021-06-17T07:12:13Z) - ESCORT: Ethereum Smart COntRacTs Vulnerability Detection using Deep
Neural Network and Transfer Learning [80.85273827468063]
Existing machine learning-based vulnerability detection methods are limited and only inspect whether the smart contract is vulnerable.
We propose ESCORT, the first Deep Neural Network (DNN)-based vulnerability detection framework for smart contracts.
We show that ESCORT achieves an average F1-score of 95% on six vulnerability types and the detection time is 0.02 seconds per contract.
arXiv Detail & Related papers (2021-03-23T15:04:44Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.