Effective Illicit Account Detection on Large Cryptocurrency MultiGraphs
- URL: http://arxiv.org/abs/2309.02460v3
- Date: Thu, 18 Jul 2024 05:59:52 GMT
- Title: Effective Illicit Account Detection on Large Cryptocurrency MultiGraphs
- Authors: Zhihao Ding, Jieming Shi, Qing Li, Jiannong Cao,
- Abstract summary: Rise in cryptocurrency-related illicit activities has led to significant losses for users.
Current detection methods mainly depend on feature engineering or are inadequate to leverage the complex information within cryptocurrency transaction networks.
We present DIAM, an effective method for detecting illicit accounts in cryptocurrency transaction networks modeled by directed multi-graphs with attributed edges.
- Score: 16.25273745598176
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Cryptocurrencies are rapidly expanding and becoming vital in digital financial markets. However, the rise in cryptocurrency-related illicit activities has led to significant losses for users. To protect the security of these platforms, it is critical to identify illicit accounts effectively. Current detection methods mainly depend on feature engineering or are inadequate to leverage the complex information within cryptocurrency transaction networks, resulting in suboptimal performance. In this paper, we present DIAM, an effective method for detecting illicit accounts in cryptocurrency transaction networks modeled by directed multi-graphs with attributed edges. DIAM first features an Edge2Seq module that captures intrinsic transaction patterns from parallel edges by considering edge attributes and their directed sequences, to generate effective node representations. Then in DIAM, we design a multigraph Discrepancy (MGD) module with a tailored message passing mechanism to capture the discrepant features between normal and illicit nodes over the multigraph topology, assisted by an attention mechanism. DIAM integrates these techniques for end-to-end training to detect illicit accounts from legitimate ones. Extensive experiments, comparing against 15 existing solutions on 4 large cryptocurrency datasets of Bitcoin and Ethereum, demonstrate that DIAM consistently outperforms others in accurately identifying illicit accounts. For example, on a Bitcoin dataset with 20 million nodes and 203 million edges, DIAM attains an F1 score of 96.55%, markedly surpassing the runner-up's score of 83.92%. The code is available at https://github.com/TommyDzh/DIAM.
Related papers
- Across-Platform Detection of Malicious Cryptocurrency Transactions via Account Interaction Learning [19.2372535101502]
Existing malicious transaction detection methods rely on large amounts of labeled data.
We propose ShadowEyes, a novel malicious transaction detection method.
We conduct extensive experiments using public datasets to evaluate the performance of ShadowEyes.
arXiv Detail & Related papers (2024-10-31T02:01:42Z) - Cryptocurrency Portfolio Optimization by Neural Networks [81.20955733184398]
This paper proposes an effective algorithm based on neural networks to take advantage of these investment products.
A deep neural network, which outputs the allocation weight of each asset at a time interval, is trained to maximize the Sharpe ratio.
A novel loss term is proposed to regulate the network's bias towards a specific asset, thus enforcing the network to learn an allocation strategy that is close to a minimum variance strategy.
arXiv Detail & Related papers (2023-10-02T12:33:28Z) - Transaction Fraud Detection via an Adaptive Graph Neural Network [64.9428588496749]
We propose an Adaptive Sampling and Aggregation-based Graph Neural Network (ASA-GNN) that learns discriminative representations to improve the performance of transaction fraud detection.
A neighbor sampling strategy is performed to filter noisy nodes and supplement information for fraudulent nodes.
Experiments on three real financial datasets demonstrate that the proposed method ASA-GNN outperforms state-of-the-art ones.
arXiv Detail & Related papers (2023-07-11T07:48:39Z) - Chainlet Orbits: Topological Address Embedding for the Bitcoin
Blockchain [15.099255988459602]
Rise of cryptocurrencies like Bitcoin, which enable transactions with a degree of pseudonymity, has led to a surge in various illicit activities.
We introduce an effective solution called Chainlet Orbits to embed Bitcoin addresses by leveraging their topological characteristics in transactions.
Our approach enables the use of interpretable and explainable machine learning models in as little as 15 minutes for most days on the Bitcoin transaction network.
arXiv Detail & Related papers (2023-05-18T21:16:59Z) - Blockchain Large Language Models [65.7726590159576]
This paper presents a dynamic, real-time approach to detecting anomalous blockchain transactions.
The proposed tool, BlockGPT, generates tracing representations of blockchain activity and trains from scratch a large language model to act as a real-time Intrusion Detection System.
arXiv Detail & Related papers (2023-04-25T11:56:18Z) - Black-box Dataset Ownership Verification via Backdoor Watermarking [67.69308278379957]
We formulate the protection of released datasets as verifying whether they are adopted for training a (suspicious) third-party model.
We propose to embed external patterns via backdoor watermarking for the ownership verification to protect them.
Specifically, we exploit poison-only backdoor attacks ($e.g.$, BadNets) for dataset watermarking and design a hypothesis-test-guided method for dataset verification.
arXiv Detail & Related papers (2022-08-04T05:32:20Z) - MGAE: Masked Autoencoders for Self-Supervised Learning on Graphs [55.66953093401889]
Masked graph autoencoder (MGAE) framework to perform effective learning on graph structure data.
Taking insights from self-supervised learning, we randomly mask a large proportion of edges and try to reconstruct these missing edges during training.
arXiv Detail & Related papers (2022-01-07T16:48:07Z) - Blockchain Phishing Scam Detection via Multi-channel Graph
Classification [1.6980621769406918]
Phishing scam detection methods will protect possible victims and build a healthier blockchain ecosystem.
We defined the transaction pattern graphs for users and transformed the phishing scam detection into a graph classification task.
The proposed multi-channel graph classification model (MCGC) is more able to detect potential phishing by extracting the transaction pattern features of the target users.
arXiv Detail & Related papers (2021-08-19T02:59:55Z) - Identity Inference on Blockchain using Graph Neural Network [5.5927440285709835]
Identity inference, which aims to make a preliminary inference about account identity, plays a significant role in blockchain security.
We present a novel approach to analyze user's behavior from the perspective of the transaction subgraph, which naturally transforms the identity inference task into a graph classification pattern.
We also propose a generic end-to-end graph neural network model, named $textI2 textBGNN$, which can accept subgraph as input and learn a function mapping the transaction subgraph pattern to account identity.
arXiv Detail & Related papers (2021-04-14T00:15:38Z) - Detecting Malicious Accounts in Permissionless Blockchains using
Temporal Graph Properties [4.506782035297339]
temporal nature of modeling accounts as nodes and transactions as directed edges in a directed graph -- for a blockchain.
Motivated by this, we introduce temporal features such as burst and attractiveness on top of several already used graph properties.
We train various Machine Learning (ML) algorithms to identify the algorithm that performs the best in detecting which accounts are malicious.
arXiv Detail & Related papers (2020-07-10T05:15:26Z) - FairMOT: On the Fairness of Detection and Re-Identification in Multiple
Object Tracking [92.48078680697311]
Multi-object tracking (MOT) is an important problem in computer vision.
We present a simple yet effective approach termed as FairMOT based on the anchor-free object detection architecture CenterNet.
The approach achieves high accuracy for both detection and tracking.
arXiv Detail & Related papers (2020-04-04T08:18:00Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.