Recurrence-Free Survival Prediction for Anal Squamous Cell Carcinoma
Chemoradiotherapy using Planning CT-based Radiomics Model
- URL: http://arxiv.org/abs/2309.02562v1
- Date: Tue, 5 Sep 2023 20:22:26 GMT
- Title: Recurrence-Free Survival Prediction for Anal Squamous Cell Carcinoma
Chemoradiotherapy using Planning CT-based Radiomics Model
- Authors: Shanshan Tang, Kai Wang, David Hein, Gloria Lin, Nina N. Sanford, Jing
Wang
- Abstract summary: Approximately 30% of non-metastatic anal squamous cell carcinoma (A SCC) patients will experience recurrence after chemotherapy (CRT)
We developed a model leveraging information extracted from radiation pretreatment planning CT to predict recurrence-free survival (RFS) in A SCC patients after CRT.
- Score: 5.485361086613949
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Objectives: Approximately 30% of non-metastatic anal squamous cell carcinoma
(ASCC) patients will experience recurrence after chemoradiotherapy (CRT), and
currently available clinical variables are poor predictors of treatment
response. We aimed to develop a model leveraging information extracted from
radiation pretreatment planning CT to predict recurrence-free survival (RFS) in
ASCC patients after CRT. Methods: Radiomics features were extracted from
planning CT images of 96 ASCC patients. Following pre-feature selection, the
optimal feature set was selected via step-forward feature selection with a
multivariate Cox proportional hazard model. The RFS prediction was generated
from a radiomics-clinical combined model based on an optimal feature set with
five repeats of five-fold cross validation. The risk stratification ability of
the proposed model was evaluated with Kaplan-Meier analysis. Results: Shape-
and texture-based radiomics features significantly predicted RFS. Compared to a
clinical-only model, radiomics-clinical combined model achieves better
performance in the testing cohort with higher C-index (0.80 vs 0.73) and AUC
(0.84 vs 0.79 for 1-year RFS, 0.84 vs 0.78 for 2-year RFS, and 0.86 vs 0.83 for
3-year RFS), leading to distinctive high- and low-risk of recurrence groups
(p<0.001). Conclusions: A treatment planning CT based radiomics and clinical
combined model had improved prognostic performance in predicting RFS for ASCC
patients treated with CRT as compared to a model using clinical features only.
Related papers
- Prediction of Breast Cancer Recurrence Risk Using a Multi-Model Approach
Integrating Whole Slide Imaging and Clinicopathologic Features [0.6679306163028237]
The aim of this study was to develop a multi-model approach integrating the analysis of whole slide images and clinicopathologic data to predict associated breast cancer recurrence risks.
The proposed novel methodology uses convolutional neural networks for feature extraction and vision transformers for contextual aggregation.
arXiv Detail & Related papers (2024-01-28T23:33:56Z) - Developing a Novel Image Marker to Predict the Clinical Outcome of Neoadjuvant Chemotherapy (NACT) for Ovarian Cancer Patients [1.7623658472574557]
Neoadjuvant chemotherapy (NACT) is one kind of treatment for advanced stage ovarian cancer patients.
Partial responses to NACT may lead to suboptimal debulking surgery, which will result in adverse prognosis.
We developed a novel image marker to achieve high accuracy prognosis prediction of NACT at an early stage.
arXiv Detail & Related papers (2023-09-13T16:59:50Z) - Improved Prognostic Prediction of Pancreatic Cancer Using Multi-Phase CT
by Integrating Neural Distance and Texture-Aware Transformer [37.55853672333369]
This paper proposes a novel learnable neural distance that describes the precise relationship between the tumor and vessels in CT images of different patients.
The developed risk marker was the strongest predictor of overall survival among preoperative factors.
arXiv Detail & Related papers (2023-08-01T12:46:02Z) - Multimodal Deep Learning for Personalized Renal Cell Carcinoma
Prognosis: Integrating CT Imaging and Clinical Data [3.790959613880792]
Renal cell carcinoma represents a significant global health challenge with a low survival rate.
This research aimed to devise a comprehensive deep-learning model capable of predicting survival probabilities in patients with renal cell carcinoma.
The proposed framework comprises three modules: a 3D image feature extractor, clinical variable selection, and survival prediction.
arXiv Detail & Related papers (2023-07-07T13:09:07Z) - Prediction of Rapid Early Progression and Survival Risk with
Pre-Radiation MRI in WHO Grade 4 Glioma Patients [0.5365740459403827]
We investigate the potential of ra-diomics, sophisticated multi-resolution fractal texture features, and different molecular features as a diagnostic and prognostic tool for prediction of REP from non-REP cases.
The prediction of survival for the patients cohort produces precision of 0.881 with standard deviation of 0.056.
The experimental result further shows that mul-ti-resolution fractal texture features perform better than conventional radiomics features for REP and survival outcomes.
arXiv Detail & Related papers (2023-06-28T20:03:18Z) - Towards Outcome-Driven Patient Subgroups: A Machine Learning Analysis
Across Six Depression Treatment Studies [41.34047608276278]
We analyzed data from six clinical trials of pharmacological treatment for depression using a neural network model.
A model classifying remission and outputting individual remission probabilities for five first-line monotherapies and three combination treatments was trained.
Post-hoc analyses yielded clusters (subgroups) based on patient prototypes learned during training.
arXiv Detail & Related papers (2023-03-24T14:34:09Z) - Penalized Deep Partially Linear Cox Models with Application to CT Scans
of Lung Cancer Patients [42.09584755334577]
Lung cancer is a leading cause of cancer mortality globally, highlighting the importance of understanding its mortality risks to design effective therapies.
The National Lung Screening Trial (NLST) employed computed tomography texture analysis to quantify the mortality risks of lung cancer patients.
We propose a novel Penalized Deep Partially Linear Cox Model (Penalized DPLC), which incorporates the SCAD penalty to select important texture features and employs a deep neural network to estimate the nonparametric component of the model.
arXiv Detail & Related papers (2023-03-09T15:38:16Z) - Deep-Learning Tool for Early Identifying Non-Traumatic Intracranial
Hemorrhage Etiology based on CT Scan [40.51754649947294]
The deep learning model was developed with 1868 eligible NCCT scans with non-traumatic ICH collected between January 2011 and April 2018.
The model's diagnostic performance was compared with clinicians's performance.
The clinicians achieve significant improvements in the sensitivity, specificity, and accuracy of diagnoses of certain hemorrhage etiologies with proposed system augmentation.
arXiv Detail & Related papers (2023-02-02T08:45:17Z) - Improving Classification Model Performance on Chest X-Rays through Lung
Segmentation [63.45024974079371]
We propose a deep learning approach to enhance abnormal chest x-ray (CXR) identification performance through segmentations.
Our approach is designed in a cascaded manner and incorporates two modules: a deep neural network with criss-cross attention modules (XLSor) for localizing lung region in CXR images and a CXR classification model with a backbone of a self-supervised momentum contrast (MoCo) model pre-trained on large-scale CXR data sets.
arXiv Detail & Related papers (2022-02-22T15:24:06Z) - An Interpretable Web-based Glioblastoma Multiforme Prognosis Prediction
Tool using Random Forest Model [1.1024591739346292]
We propose predictive models that estimate GBM patients' health status of one-year after treatments.
We used total of 467 GBM patients' clinical profile consists of 13 features and two follow-up dates.
Our machine learning models suggest that the top three prognostic factors for GBM patient survival were MGMT gene promoter, the extent of resection, and age.
arXiv Detail & Related papers (2021-08-30T07:56:34Z) - Comparison of Machine Learning Classifiers to Predict Patient Survival
and Genetics of GBM: Towards a Standardized Model for Clinical Implementation [44.02622933605018]
Radiomic models have been shown to outperform clinical data for outcome prediction in glioblastoma (GBM)
We aimed to compare nine machine learning classifiers to predict overall survival (OS), isocitrate dehydrogenase (IDH) mutation, O-6-methylguanine-DNA-methyltransferase (MGMT) promoter methylation, epidermal growth factor receptor (EGFR) VII amplification and Ki-67 expression in GBM patients.
xGB obtained maximum accuracy for OS (74.5%), AB for IDH mutation (88%), MGMT methylation (71,7%), Ki-67 expression (86,6%), and EGFR amplification (81,
arXiv Detail & Related papers (2021-02-10T15:10:37Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.