A Metabolic-Imaging Integrated Model for Prognostic Prediction in Colorectal Liver Metastases
- URL: http://arxiv.org/abs/2507.19734v1
- Date: Sat, 26 Jul 2025 01:29:38 GMT
- Title: A Metabolic-Imaging Integrated Model for Prognostic Prediction in Colorectal Liver Metastases
- Authors: Qinlong Li, Pu Sun, Guanlin Zhu, Tianjiao Liang, Honggang QI,
- Abstract summary: This study developed and validated a robust machine learning model for predicting postoperative recurrence risk.<n>We restricted input variables to preoperative baseline clinical parameters and radiomic features from contrast-enhanced CT imaging.<n>The 3-month recurrence prediction model demonstrated optimal performance with an AUC of 0.723 in cross-validation.
- Score: 5.6492616107251274
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Prognostic evaluation in patients with colorectal liver metastases (CRLM) remains challenging due to suboptimal accuracy of conventional clinical models. This study developed and validated a robust machine learning model for predicting postoperative recurrence risk. Preliminary ensemble models achieved exceptionally high performance (AUC $>$ 0.98) but incorporated postoperative features, introducing data leakage risks. To enhance clinical applicability, we restricted input variables to preoperative baseline clinical parameters and radiomic features from contrast-enhanced CT imaging, specifically targeting recurrence prediction at 3, 6, and 12 months postoperatively. The 3-month recurrence prediction model demonstrated optimal performance with an AUC of 0.723 in cross-validation. Decision curve analysis revealed that across threshold probabilities of 0.55-0.95, the model consistently provided greater net benefit than "treat-all" or "treat-none" strategies, supporting its utility in postoperative surveillance and therapeutic decision-making. This study successfully developed a robust predictive model for early CRLM recurrence with confirmed clinical utility. Importantly, it highlights the critical risk of data leakage in clinical prognostic modeling and proposes a rigorous framework to mitigate this issue, enhancing model reliability and translational value in real-world settings.
Related papers
- Evaluating the Predictive Value of Preoperative MRI for Erectile Dysfunction Following Radical Prostatectomy [0.1314058888017264]
preoperative prediction of erectile dysfunction (ED) is important for counseling patients undergoing radical prostatectomy.<n>We evaluate four modeling strategies: a clinical-only baseline, representing current state-of-the-art; classical models using handcrafted anatomical features derived from MRI; deep learning models trained directly on MRI slices; and multimodal fusion of imaging and clinical inputs.
arXiv Detail & Related papers (2025-08-05T14:00:07Z) - SurgeryLSTM: A Time-Aware Neural Model for Accurate and Explainable Length of Stay Prediction After Spine Surgery [44.119171920037196]
We develop and evaluate machine learning (ML) models for predicting length of stay (LOS) in elective spine surgery.<n>We compare traditional ML models with our developed model, SurgeryLSTM, a masked bidirectional long short-term memory (BiLSTM) with an attention.<n>Performance was evaluated using the coefficient of determination (R2) and key predictors were identified using explainable AI.
arXiv Detail & Related papers (2025-07-15T01:18:28Z) - Outcome prediction and individualized treatment effect estimation in patients with large vessel occlusion stroke [0.0]
We developed and evaluated interpretable deep learning models to predict functional outcomes in terms of the modified Rankin Scale score.<n>We considered non-contrast CT (NCCT) and angiography (CTA) scans which were integrated using novel foundation models.<n>The most important clinical predictor for functional outcome was pre-stroke disability.
arXiv Detail & Related papers (2025-07-03T09:51:56Z) - AUTOCT: Automating Interpretable Clinical Trial Prediction with LLM Agents [47.640779069547534]
AutoCT is a novel framework that combines the reasoning capabilities of large language models with the explainability of classical machine learning.<n>We show that AutoCT performs on par with or better than SOTA methods on clinical trial prediction tasks within only a limited number of self-refinement iterations.
arXiv Detail & Related papers (2025-06-04T11:50:55Z) - Machine Learning-Based Model for Postoperative Stroke Prediction in Coronary Artery Disease [0.0]
This study aims to develop and evaluate a sophisticated machine learning prediction model to assess postoperative stroke risk.<n>The dataset has 70% training and 30% test. Numerical values were normalized, whereas categorical variables were one-hot encoded.<n> Logistic Regression, XGBoost, SVM, and CatBoost were employed for predictive modeling, and SHAP analysis assessed stroke risk for each variable.
arXiv Detail & Related papers (2025-03-15T02:50:32Z) - Prediction of Lung Metastasis from Hepatocellular Carcinoma using the SEER Database [0.9055332067000195]
Hepatocellular carcinoma (HCC) is a leading cause of cancer-related mortality.<n> predictive models for lung metastasis inHCC remain limited in scope and clinical applicability.<n>We develop and validate an end-to-end machine learning pipeline using data from the Surveillance, Epidemiology, and End Results (SEER) database.
arXiv Detail & Related papers (2025-01-20T20:06:31Z) - Machine Learning for ALSFRS-R Score Prediction: Making Sense of the Sensor Data [44.99833362998488]
Amyotrophic Lateral Sclerosis (ALS) is a rapidly progressive neurodegenerative disease that presents individuals with limited treatment options.
The present investigation, spearheaded by the iDPP@CLEF 2024 challenge, focuses on utilizing sensor-derived data obtained through an app.
arXiv Detail & Related papers (2024-07-10T19:17:23Z) - Modeling Long Sequences in Bladder Cancer Recurrence: A Comparative Evaluation of LSTM,Transformer,and Mamba [0.0]
This study integrates the advantages of deep learning models for handling long-sequence data with the Cox proportional hazards model.
The LSTM-Cox model is a robust and efficient method for recurrent data analysis and feature extraction,surpassing newer models like Transformer and Mamba.
arXiv Detail & Related papers (2024-05-28T18:38:15Z) - Recurrence-Free Survival Prediction for Anal Squamous Cell Carcinoma
Chemoradiotherapy using Planning CT-based Radiomics Model [5.485361086613949]
Approximately 30% of non-metastatic anal squamous cell carcinoma (A SCC) patients will experience recurrence after chemotherapy (CRT)
We developed a model leveraging information extracted from radiation pretreatment planning CT to predict recurrence-free survival (RFS) in A SCC patients after CRT.
arXiv Detail & Related papers (2023-09-05T20:22:26Z) - Improved Prognostic Prediction of Pancreatic Cancer Using Multi-Phase CT
by Integrating Neural Distance and Texture-Aware Transformer [37.55853672333369]
This paper proposes a novel learnable neural distance that describes the precise relationship between the tumor and vessels in CT images of different patients.
The developed risk marker was the strongest predictor of overall survival among preoperative factors.
arXiv Detail & Related papers (2023-08-01T12:46:02Z) - Bayesian prognostic covariate adjustment [59.75318183140857]
Historical data about disease outcomes can be integrated into the analysis of clinical trials in many ways.
We build on existing literature that uses prognostic scores from a predictive model to increase the efficiency of treatment effect estimates.
arXiv Detail & Related papers (2020-12-24T05:19:03Z) - Increasing the efficiency of randomized trial estimates via linear
adjustment for a prognostic score [59.75318183140857]
Estimating causal effects from randomized experiments is central to clinical research.
Most methods for historical borrowing achieve reductions in variance by sacrificing strict type-I error rate control.
arXiv Detail & Related papers (2020-12-17T21:10:10Z) - MIA-Prognosis: A Deep Learning Framework to Predict Therapy Response [58.0291320452122]
This paper aims at a unified deep learning approach to predict patient prognosis and therapy response.
We formalize the prognosis modeling as a multi-modal asynchronous time series classification task.
Our predictive model could further stratify low-risk and high-risk patients in terms of long-term survival.
arXiv Detail & Related papers (2020-10-08T15:30:17Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.