論文の概要: LightNeuS: Neural Surface Reconstruction in Endoscopy using Illumination
Decline
- arxiv url: http://arxiv.org/abs/2309.02777v1
- Date: Wed, 6 Sep 2023 06:41:40 GMT
- ステータス: 処理完了
- システム内更新日: 2023-09-07 16:38:39.842916
- Title: LightNeuS: Neural Surface Reconstruction in Endoscopy using Illumination
Decline
- Title(参考訳): lightneus:光減衰を用いた内視鏡下神経表面再建
- Authors: V\'ictor M. Batlle, Jos\'e M. M. Montiel, Pascal Fua and Juan D.
Tard\'os
- Abstract要約: 単眼内視鏡で取得した画像から3次元再構成を行う手法を提案する。
第一に、内的空洞は水密であり、符号付き距離関数でモデル化することによって自然に強制される性質である。
第二に、シーンの照明は可変であり、それは内視鏡の光源から来ており、四角い距離と表面との逆転で崩壊する。
- 参考スコア(独自算出の注目度): 45.49984459497878
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We propose a new approach to 3D reconstruction from sequences of images
acquired by monocular endoscopes. It is based on two key insights. First,
endoluminal cavities are watertight, a property naturally enforced by modeling
them in terms of a signed distance function. Second, the scene illumination is
variable. It comes from the endoscope's light sources and decays with the
inverse of the squared distance to the surface. To exploit these insights, we
build on NeuS, a neural implicit surface reconstruction technique with an
outstanding capability to learn appearance and a SDF surface model from
multiple views, but currently limited to scenes with static illumination. To
remove this limitation and exploit the relation between pixel brightness and
depth, we modify the NeuS architecture to explicitly account for it and
introduce a calibrated photometric model of the endoscope's camera and light
source. Our method is the first one to produce watertight reconstructions of
whole colon sections. We demonstrate excellent accuracy on phantom imagery.
Remarkably, the watertight prior combined with illumination decline, allows to
complete the reconstruction of unseen portions of the surface with acceptable
accuracy, paving the way to automatic quality assessment of cancer screening
explorations, measuring the global percentage of observed mucosa.
- Abstract(参考訳): 単眼内視鏡で取得した画像から3次元再構成を行う手法を提案する。
それは二つの重要な洞察に基づいている。
第一に、内光キャビティは水密であり、符号付き距離関数でモデル化することで自然に強制される性質である。
第2に、シーン照明は可変である。
内視鏡の光源から発生し、表面への二乗距離の逆数で崩壊する。
これらの知見を生かして,複数の視点から外観とSDF表面モデルを学ぶ能力に優れたニュートラルサーフェス再構成技術であるNeuSを開発したが,現在は静的照明のシーンに限られている。
この制限を除去し, 画素輝度と奥行きの関係を活かすため, NeuS アーキテクチャを明示的に考慮し, 内視鏡カメラと光源の校正光度モデルを導入する。
当法は結腸全節の水密再建を初めて行った方法である。
ファントム画像の精度は良好である。
注目に値するのは, 水密前と照明の低下が組み合わさって, 表面の見えない部分の再現を許容される精度で達成し, がん検診の自動的品質評価への道を開き, 観察された粘膜のグローバルパーセンテージを測定したことである。
関連論文リスト
- Hybrid NeRF-Stereo Vision: Pioneering Depth Estimation and 3D Reconstruction in Endoscopy [11.798218793025974]
本稿では3次元再構成のためのNeural Radiance Fields (NeRF) を用いた革新的なパイプラインを提案する。
提案手法は, 粗いモデルが得られる予備的なNeRF再構成を用いて, 再建された環境内に双眼シーンを生成する。
高忠実度深度マップは、現実的な脳ファントムの単眼内視鏡映像から生成される。
論文 参考訳(メタデータ) (2024-10-05T05:26:21Z) - High-fidelity Endoscopic Image Synthesis by Utilizing Depth-guided Neural Surfaces [18.948630080040576]
内視鏡画像に適用したNeuSを1フレームの深度マップで補足した新しい大腸部分再建法を提案する。
本手法は, 大腸切片を完全にレンダリングし, 表面の見えない部分を捕捉する際の異常な精度を示す。
このブレークスルーは、安定的で一貫してスケールされた再建を達成するための道を開き、がんスクリーニングの手順と治療介入の質を高めることを約束する。
論文 参考訳(メタデータ) (2024-04-20T18:06:26Z) - Leveraging Near-Field Lighting for Monocular Depth Estimation from Endoscopy Videos [12.497782583094281]
内視鏡ビデオにおける単眼深度推定は、補助手術やロボット手術により、臓器のより良いカバレッジと様々な健康問題の検出が可能になる。
主流の自然画像深度推定では有望な進歩があったが、内視鏡画像では技術が不十分であった。
本稿では, 内視鏡から放射される光を表面から反射する光学的手がかりを用いて, 単分子深度推定を改善する。
論文 参考訳(メタデータ) (2024-03-26T17:52:23Z) - Passive superresolution imaging of incoherent objects [63.942632088208505]
手法は、Hermite-Gaussianモードとその重ね合わせのオーバーコンプリートベースで、画像平面内のフィールドの空間モード成分を測定することで構成される。
ディープニューラルネットワークは、これらの測定からオブジェクトを再構築するために使用される。
論文 参考訳(メタデータ) (2023-04-19T15:53:09Z) - Self-calibrating Photometric Stereo by Neural Inverse Rendering [88.67603644930466]
本稿では3次元オブジェクト再構成のための非校正光度ステレオの課題に取り組む。
本研究では,物体形状,光方向,光強度を協調的に最適化する手法を提案する。
本手法は,実世界のデータセット上での光推定と形状復元における最先端の精度を示す。
論文 参考訳(メタデータ) (2022-07-16T02:46:15Z) - Edge-preserving Near-light Photometric Stereo with Neural Surfaces [76.50065919656575]
近光光度ステレオで解析的に微分可能なニューラルサーフェスを導入し、シャープ深度エッジでの微分誤差を回避する。
合成シーンと実世界のシーンの両方で実験を行い, エッジ保存による詳細な形状復元法の有効性を実証した。
論文 参考訳(メタデータ) (2022-07-11T04:51:43Z) - A Novel Hybrid Endoscopic Dataset for Evaluating Machine Learning-based
Photometric Image Enhancement Models [0.9236074230806579]
本研究は, 生成逆数的手法により生成される新しい合成データ集合を導入する。
また、過度の露光および過度の露光条件において、浅いベースと深層学習に基づく画像強調法の両方を探索する。
論文 参考訳(メタデータ) (2022-07-06T01:47:17Z) - Neural 3D Reconstruction in the Wild [86.6264706256377]
そこで我々は,インターネット写真コレクションから効率よく高精度な表面再構成を実現する新しい手法を提案する。
そこで本研究では,これらのシーンにおける再構成性能を評価するための新しいベンチマークとプロトコルを提案する。
論文 参考訳(メタデータ) (2022-05-25T17:59:53Z) - Photometric single-view dense 3D reconstruction in endoscopy [2.094821665776961]
大腸内視鏡検査において,光度ステレオによるヒト大腸の3次元立体再構成を実現するために,制御光を利用する。
本手法は実際の医療環境下で機能し,適切な位置校正法と大腸管形状に適応した深さ推定法の両方を提供する。
論文 参考訳(メタデータ) (2022-04-19T18:23:31Z) - UNISURF: Unifying Neural Implicit Surfaces and Radiance Fields for
Multi-View Reconstruction [61.17219252031391]
ニューラル暗黙的3D表現を用いた多視点画像から表面を再構築する新しい手法を提案する。
我々の重要な洞察は、暗黙の曲面モデルと放射場を統一的に定式化し、表面および体積のレンダリングを可能にすることである。
実験により, マスクを必要とせず, idrと同等の性能を保ちつつ, 再構成品質でnrfを上回った。
論文 参考訳(メタデータ) (2021-04-20T15:59:38Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。