Dilation, Discrimination and Uhlmann's Theorem of Link Products of
Quantum Channels
- URL: http://arxiv.org/abs/2309.03052v1
- Date: Wed, 6 Sep 2023 14:45:00 GMT
- Title: Dilation, Discrimination and Uhlmann's Theorem of Link Products of
Quantum Channels
- Authors: Qiang Lei, Liuheng Cao, Asutosh Kumar, Junde Wu
- Abstract summary: The study of quantum channels is the most fundamental theoretical problem in quantum information and quantum communication theory.
We establish the Stinespring dilation theorem of the link product of quantum channels in two different ways, discuss the discrimination of quantum channels and show that the distinguishability can be improved by self-linking each quantum channel n times as n grows.
- Score: 5.380009458891537
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: The study of quantum channels is the most fundamental theoretical problem in
quantum information and quantum communication theory. The link product theory
of quantum channels is an important tool for studying quantum networks. In this
paper, we establish the Stinespring dilation theorem of the link product of
quantum channels in two different ways, discuss the discrimination of quantum
channels and show that the distinguishability can be improved by self-linking
each quantum channel n times as n grows. We also find that the maximum value of
Uhlmann's theorem can be achieved for diagonal channels.
Related papers
- Transmission of quantum information through quantum fields in curved spacetimes [0.0]
We construct a quantum communication channel between two localized qubit systems mediated by a relativistic quantum field.
We express the quantum capacity of the quantum communication channel purely in terms of the correlation functions of the field and the causal propagator for the wave equation.
arXiv Detail & Related papers (2024-08-01T12:48:48Z) - Upper bounds on probabilities in channel measurements on qubit channels and their applications [0.0]
We derive the upper bounds of the probability in a channel measurement for specific classes of quantum channels.
These applications demonstrate the significance of the obtained upper bounds.
arXiv Detail & Related papers (2024-06-21T14:25:12Z) - Separable Power of Classical and Quantum Learning Protocols Through the Lens of No-Free-Lunch Theorem [70.42372213666553]
The No-Free-Lunch (NFL) theorem quantifies problem- and data-independent generalization errors regardless of the optimization process.
We categorize a diverse array of quantum learning algorithms into three learning protocols designed for learning quantum dynamics under a specified observable.
Our derived NFL theorems demonstrate quadratic reductions in sample complexity across CLC-LPs, ReQu-LPs, and Qu-LPs.
We attribute this performance discrepancy to the unique capacity of quantum-related learning protocols to indirectly utilize information concerning the global phases of non-orthogonal quantum states.
arXiv Detail & Related papers (2024-05-12T09:05:13Z) - Quantum Autoencoders for Learning Quantum Channel Codes [0.0]
We develop a machine learning framework to generate quantum channel codes and evaluate their effectiveness.
Applying it to various quantum channel models as proof of concept, we demonstrate strong performance in each case.
arXiv Detail & Related papers (2023-07-13T08:37:21Z) - Quantum data learning for quantum simulations in high-energy physics [55.41644538483948]
We explore the applicability of quantum-data learning to practical problems in high-energy physics.
We make use of ansatz based on quantum convolutional neural networks and numerically show that it is capable of recognizing quantum phases of ground states.
The observation of non-trivial learning properties demonstrated in these benchmarks will motivate further exploration of the quantum-data learning architecture in high-energy physics.
arXiv Detail & Related papers (2023-06-29T18:00:01Z) - Theory of Quantum Generative Learning Models with Maximum Mean
Discrepancy [67.02951777522547]
We study learnability of quantum circuit Born machines (QCBMs) and quantum generative adversarial networks (QGANs)
We first analyze the generalization ability of QCBMs and identify their superiorities when the quantum devices can directly access the target distribution.
Next, we prove how the generalization error bound of QGANs depends on the employed Ansatz, the number of qudits, and input states.
arXiv Detail & Related papers (2022-05-10T08:05:59Z) - Quantum Semantic Communications for Resource-Efficient Quantum Networking [52.3355619190963]
This letter proposes a novel quantum semantic communications (QSC) framework exploiting advancements in quantum machine learning and quantum semantic representations.
The proposed framework achieves approximately 50-75% reduction in quantum communication resources needed, while achieving a higher quantum semantic fidelity.
arXiv Detail & Related papers (2022-05-05T03:49:19Z) - Efficient criteria of quantumness for a large system of qubits [58.720142291102135]
We discuss the dimensionless combinations of basic parameters of large, partially quantum coherent systems.
Based on analytical and numerical calculations, we suggest one such number for a system of qubits undergoing adiabatic evolution.
arXiv Detail & Related papers (2021-08-30T23:50:05Z) - Extendibility limits the performance of quantum processors [5.949779668853555]
We introduce the resource theory of unextendibility, which is associated with the inability of extending quantum entanglement in a given quantum state to multiple parties.
We derive non-asymptotic, upper bounds on the rate at which quantum communication or entanglement preservation is possible by utilizing an arbitrary quantum channel a finite number of times.
We show that the bounds obtained are significantly tighter than previously known bounds for quantum communication over both the depolarizing and erasure channels.
arXiv Detail & Related papers (2021-08-06T14:17:08Z) - Maximum Relative Entropy of Coherence for Quantum Channels [0.6685158490869523]
We introduce a new coherence quantifier for quantum channels via maximum relative entropy.
We show that the maximum relative entropy for coherence of quantum channels is directly related to the maximally coherent channels under a particular class of superoperations.
arXiv Detail & Related papers (2021-06-30T15:03:01Z) - Using Quantum Metrological Bounds in Quantum Error Correction: A Simple
Proof of the Approximate Eastin-Knill Theorem [77.34726150561087]
We present a proof of the approximate Eastin-Knill theorem, which connects the quality of a quantum error-correcting code with its ability to achieve a universal set of logical gates.
Our derivation employs powerful bounds on the quantum Fisher information in generic quantum metrological protocols.
arXiv Detail & Related papers (2020-04-24T17:58:10Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.