Upper bounds on probabilities in channel measurements on qubit channels and their applications
- URL: http://arxiv.org/abs/2406.15179v1
- Date: Fri, 21 Jun 2024 14:25:12 GMT
- Title: Upper bounds on probabilities in channel measurements on qubit channels and their applications
- Authors: Taihei Kimoto, Takayuki Miyadera,
- Abstract summary: We derive the upper bounds of the probability in a channel measurement for specific classes of quantum channels.
These applications demonstrate the significance of the obtained upper bounds.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: One of the fundamental tasks in quantum information processing is to measure the quantum channels. Similar to measurements of quantum states, measurements of quantum channels are inherently stochastic, that is, quantum theory provides a formula to calculate the probability of obtaining an outcome. The upper bound on each probability associated with the measurement outcome of the quantum channels is a fundamental and important quantity. In this study, we derived the upper bounds of the probability in a channel measurement for specific classes of quantum channels. We also present two applications for the upper bounds. The first is the notion of convertibility considered by Alberti and Uhlmann and the second is the detection problem of a quantum channel. These applications demonstrate the significance of the obtained upper bounds.
Related papers
- Entanglement measurement based on convex hull properties [0.0]
We will propose a scheme for measuring quantum entanglement, which starts with treating the set of quantum separable states as a convex hull of quantum separable pure states.
Although a large amount of data is required in the measurement process, this method is not only applicable to 2-qubit quantum states, but also a entanglement measurement method that can be applied to any dimension and any fragment.
arXiv Detail & Related papers (2024-11-08T08:03:35Z) - The multimode conditional quantum Entropy Power Inequality and the squashed entanglement of the extreme multimode bosonic Gaussian channels [53.253900735220796]
Inequality determines the minimum conditional von Neumann entropy of the output of the most general linear mixing of bosonic quantum modes.
Bosonic quantum systems constitute the mathematical model for the electromagnetic radiation in the quantum regime.
arXiv Detail & Related papers (2024-10-18T13:59:50Z) - Distributed Quantum Computation via Entanglement Forging and Teleportation [13.135604356093193]
Distributed quantum computation is a practical method for large-scale quantum computation on quantum processors with limited size.
In this paper, we demonstrate the methods to implement a nonlocal quantum circuit on two quantum processors without any quantum correlations.
arXiv Detail & Related papers (2024-09-04T08:10:40Z) - Imaginarity of quantum channels: Refinement and Alternative [6.570066787107033]
We add strong monotonicity and convexity to the requirement of imaginarity measure of quantum channels to make the measure proper.
We present three imaginarity measures of quantum channels via on the robustness, the trace norm and entropy, respectively.
arXiv Detail & Related papers (2024-05-10T03:27:18Z) - Fundamental limitations on the recoverability of quantum processes [0.6990493129893111]
We determine fundamental limitations on how well the physical transformation on quantum channels can be undone or reversed.
We refine (strengthen) the quantum data processing inequality for quantum channels under the action of quantum superchannels.
We also provide a refined inequality for the entropy change of quantum channels under the action of an arbitrary quantum superchannel.
arXiv Detail & Related papers (2024-03-19T17:50:24Z) - Power Characterization of Noisy Quantum Kernels [52.47151453259434]
We show that noise may make quantum kernel methods to only have poor prediction capability, even when the generalization error is small.
We provide a crucial warning to employ noisy quantum kernel methods for quantum computation.
arXiv Detail & Related papers (2024-01-31T01:02:16Z) - A vertical gate-defined double quantum dot in a strained germanium
double quantum well [48.7576911714538]
Gate-defined quantum dots in silicon-germanium heterostructures have become a compelling platform for quantum computation and simulation.
We demonstrate the operation of a gate-defined vertical double quantum dot in a strained germanium double quantum well.
We discuss challenges and opportunities and outline potential applications in quantum computing and quantum simulation.
arXiv Detail & Related papers (2023-05-23T13:42:36Z) - Simple Tests of Quantumness Also Certify Qubits [69.96668065491183]
A test of quantumness is a protocol that allows a classical verifier to certify (only) that a prover is not classical.
We show that tests of quantumness that follow a certain template, which captures recent proposals such as (Kalai et al., 2022) can in fact do much more.
Namely, the same protocols can be used for certifying a qubit, a building-block that stands at the heart of applications such as certifiable randomness and classical delegation of quantum computation.
arXiv Detail & Related papers (2023-03-02T14:18:17Z) - Anticipative measurements in hybrid quantum-classical computation [68.8204255655161]
We present an approach where the quantum computation is supplemented by a classical result.
Taking advantage of its anticipation also leads to a new type of quantum measurements, which we call anticipative.
In an anticipative quantum measurement the combination of the results from classical and quantum computations happens only in the end.
arXiv Detail & Related papers (2022-09-12T15:47:44Z) - On quantum channel capacities: an additive refinement [0.0]
Capacities of quantum channels are fundamental quantities in the theory of quantum information.
Asymptotic regularization is generically necessary making the study of capacities notoriously hard.
We prove additive quantities for quantum channel capacities that can be employed for quantum Shannon theorems.
arXiv Detail & Related papers (2022-05-15T07:21:38Z) - Efficient criteria of quantumness for a large system of qubits [58.720142291102135]
We discuss the dimensionless combinations of basic parameters of large, partially quantum coherent systems.
Based on analytical and numerical calculations, we suggest one such number for a system of qubits undergoing adiabatic evolution.
arXiv Detail & Related papers (2021-08-30T23:50:05Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.