論文の概要: Zero Trust: Applications, Challenges, and Opportunities
- arxiv url: http://arxiv.org/abs/2309.03582v1
- Date: Thu, 7 Sep 2023 09:23:13 GMT
- ステータス: 処理完了
- システム内更新日: 2024-03-25 22:59:44.280891
- Title: Zero Trust: Applications, Challenges, and Opportunities
- Title(参考訳): Zero Trust: アプリケーション,課題,機会
- Authors: Saeid Ghasemshirazi, Ghazaleh Shirvani, Mohammad Ali Alipour,
- Abstract要約: この調査は、ゼロトラストの理論的基礎、実践的実装、応用、課題、今後のトレンドを包括的に調査する。
クラウド環境の保護、リモートワークの促進、IoT(Internet of Things)エコシステムの保護におけるZero Trustの意義を強調します。
Zero TrustをAIや機械学習といった新興技術と統合することは、その有効性を高め、動的で応答性のあるセキュリティの展望を約束する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: The escalating complexity of cybersecurity threats necessitates innovative approaches to safeguard digital assets and sensitive information. The Zero Trust paradigm offers a transformative solution by challenging conventional security models and emphasizing continuous verification and least privilege access. This survey comprehensively explores the theoretical foundations, practical implementations, applications, challenges, and future trends of Zero Trust. Through meticulous analysis, we highlight the relevance of Zero Trust in securing cloud environments, facilitating remote work, and protecting the Internet of Things (IoT) ecosystem. While cultural barriers and technical complexities present challenges, their mitigation unlocks Zero Trust's potential. Integrating Zero Trust with emerging technologies like AI and machine learning augments its efficacy, promising a dynamic and responsive security landscape. Embracing Zero Trust empowers organizations to navigate the ever-evolving cybersecurity realm with resilience and adaptability, redefining trust in the digital age.
- Abstract(参考訳): サイバーセキュリティの脅威のエスカレートする複雑さは、デジタル資産と機密情報を保護するための革新的なアプローチを必要とする。
Zero Trustパラダイムは、従来のセキュリティモデルに挑戦し、継続的な検証と最小特権アクセスを強調することによって、変革的なソリューションを提供する。
この調査は、ゼロトラストの理論的基礎、実践的実装、応用、課題、今後のトレンドを包括的に調査する。
厳密な分析を通じて、クラウド環境の保護、リモートワークの促進、IoT(Internet of Things)エコシステムの保護におけるZero Trustの関連性を強調します。
文化的障壁と技術的な複雑さは困難を呈するが、その緩和はゼロトラストの可能性を解き放つ。
Zero TrustをAIや機械学習といった新興技術と統合することは、その有効性を高め、動的で応答性のあるセキュリティの展望を約束する。
Zero Trustを導入することで、組織はレジリエンスと適応性によって進化を続けるサイバーセキュリティ領域をナビゲートし、デジタル時代の信頼を再定義することが可能になる。
関連論文リスト
- Global Challenge for Safe and Secure LLMs Track 1 [57.08717321907755]
LLM(Global Challenge for Safe and Secure Large Language Models)は、AI Singapore(AISG)とCyberSG R&D Programme Office(CRPO)が主催する先駆的イニシアチブである。
本稿では,AI Singapore(AISG)とCyberSG R&D Programme Office(CRPO)が組織した先駆的イニシアチブであるLLM(Global Challenge for Safe and Secure Large Language Models)を紹介する。
論文 参考訳(メタデータ) (2024-11-21T08:20:31Z) - Authentication and identity management based on zero trust security model in micro-cloud environment [0.0]
Zero Trustフレームワークは、クラウドパラダイムにおけるインサイダー攻撃によるセキュリティ侵害を抑えながら、外部攻撃者を追跡してブロックすることができる。
本稿では,リソースへのアクセス制御の確立のために,認証機構,信頼スコアの算出,ポリシの生成に焦点をあてる。
論文 参考訳(メタデータ) (2024-10-29T09:06:13Z) - Enhancing Enterprise Security with Zero Trust Architecture [0.0]
Zero Trust Architecture (ZTA) は、現代のサイバーセキュリティに対する変革的なアプローチである。
ZTAは、ユーザ、デバイス、システムがデフォルトで信頼できないことを前提として、セキュリティパラダイムをシフトする。
本稿では、アイデンティティとアクセス管理(IAM)、マイクロセグメンテーション、継続的監視、行動分析など、ZTAの重要なコンポーネントについて検討する。
論文 参考訳(メタデータ) (2024-10-23T21:53:16Z) - Confronting the Reproducibility Crisis: A Case Study of Challenges in Cybersecurity AI [0.0]
AIベースのサイバーセキュリティの重要な領域は、悪意のある摂動からディープニューラルネットワークを守ることに焦点を当てている。
VeriGauge ツールキットを用いて,認証されたロバスト性に関する先行研究の結果の検証を試みる。
私たちの発見は、標準化された方法論、コンテナ化、包括的なドキュメントの緊急性の必要性を浮き彫りにしています。
論文 参考訳(メタデータ) (2024-05-29T04:37:19Z) - GAN-GRID: A Novel Generative Attack on Smart Grid Stability Prediction [53.2306792009435]
我々は,現実の制約に合わせたスマートグリッドの安定性予測システムを対象とした,新たな敵攻撃GAN-GRIDを提案する。
以上の結果から,データやモデル知識を欠いた,安定度モデルのみに武装した敵が,攻撃成功率0.99の安定度でデータを作成できることが判明した。
論文 参考訳(メタデータ) (2024-05-20T14:43:46Z) - Securing Federated Learning with Control-Flow Attestation: A Novel Framework for Enhanced Integrity and Resilience against Adversarial Attacks [2.28438857884398]
分散機械学習パラダイムとしてのフェデレートラーニング(FL)は、新たなサイバーセキュリティ課題を導入した。
本研究では,従来サイバーセキュリティに用いられてきた制御フロー(CFA)機構にインスパイアされた,革新的なセキュリティフレームワークを提案する。
我々は、ネットワーク全体にわたるモデル更新の完全性を認証し、検証し、モデル中毒や敵対的干渉に関連するリスクを効果的に軽減する。
論文 参考訳(メタデータ) (2024-03-15T04:03:34Z) - A Zero Trust Framework for Realization and Defense Against Generative AI
Attacks in Power Grid [62.91192307098067]
本稿では電力グリッドサプライチェーン(PGSC)のための新しいゼロ信頼フレームワークを提案する。
潜在的なGenAIによる攻撃ベクターの早期発見、テールリスクに基づく安定性の評価、そしてそのような脅威の緩和を容易にする。
実験の結果,ゼロ信頼フレームワークは攻撃ベクトル生成に95.7%の精度,95%安定PGSCに9.61%のリスク尺度,GenAIによる攻撃に対する防御に99%の信頼性が得られた。
論文 参考訳(メタデータ) (2024-03-11T02:47:21Z) - Generative AI for Secure Physical Layer Communications: A Survey [80.0638227807621]
Generative Artificial Intelligence(GAI)は、AIイノベーションの最前線に立ち、多様なコンテンツを生成するための急速な進歩と非並行的な能力を示す。
本稿では,通信ネットワークの物理層におけるセキュリティ向上におけるGAIの様々な応用について,広範な調査を行う。
私たちは、物理的レイヤセキュリティの課題に対処する上で、GAIの役割を掘り下げ、通信の機密性、認証、可用性、レジリエンス、整合性に重点を置いています。
論文 参考訳(メタデータ) (2024-02-21T06:22:41Z) - The Security and Privacy of Mobile Edge Computing: An Artificial Intelligence Perspective [64.36680481458868]
Mobile Edge Computing (MEC)は、クラウドコンピューティングと情報技術(IT)サービスをネットワークのエッジで配信できるようにする新しいコンピューティングパラダイムである。
本稿では,人工知能(AI)の観点からMECのセキュリティとプライバシに関する調査を行う。
新たなセキュリティとプライバシの問題に加えて、AIの観点からの潜在的なソリューションにも重点を置いています。
論文 参考訳(メタデータ) (2024-01-03T07:47:22Z) - Zero Trust for Cyber Resilience [13.343937277604892]
この章はゼロトラストモデルにおけるサイバーレジリエンスに注意を向けている。
従来の周辺セキュリティからゼロ信頼への進化を紹介し,その違いについて議論する。
論文 参考訳(メタデータ) (2023-12-05T16:53:20Z) - A Survey of Trustworthy Federated Learning with Perspectives on
Security, Robustness, and Privacy [47.89042524852868]
Federated Learning (FL) は,さまざまな現実のシナリオに対して,有望なソリューションとして注目されている。
しかし、データの分離とプライバシーに関する課題は、FLシステムの信頼性を脅かす。
論文 参考訳(メタデータ) (2023-02-21T12:52:12Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。