論文の概要: Zero Trust for Cyber Resilience
- arxiv url: http://arxiv.org/abs/2312.02882v1
- Date: Tue, 5 Dec 2023 16:53:20 GMT
- ステータス: 処理完了
- システム内更新日: 2024-03-18 13:05:51.100018
- Title: Zero Trust for Cyber Resilience
- Title(参考訳): サイバーレジリエンスのゼロトラスト
- Authors: Yunfei Ge, Quanyan Zhu,
- Abstract要約: この章はゼロトラストモデルにおけるサイバーレジリエンスに注意を向けている。
従来の周辺セキュリティからゼロ信頼への進化を紹介し,その違いについて議論する。
- 参考スコア(独自算出の注目度): 13.343937277604892
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The increased connectivity and potential insider threats make traditional network defense vulnerable. Instead of assuming that everything behind the security perimeter is safe, the zero-trust security model verifies every incoming request before granting access. This chapter draws attention to the cyber resilience within the zero-trust model. We introduce the evolution from traditional perimeter-based security to zero trust and discuss their difference. Two key elements of the zero-trust engine are trust evaluation (TE) and policy engine (PE). We introduce the design of the two components and discuss how their interplay would contribute to cyber resilience. Dynamic game theory and learning are applied as quantitative approaches to achieve automated zero-trust cyber resilience. Several case studies and implementations are introduced to illustrate the benefits of such a security model.
- Abstract(参考訳): 接続性の向上とインサイダーの脅威により、従来のネットワーク防御は脆弱になる。
セキュリティの範囲内のすべてのものが安全であると仮定する代わりに、ゼロトラストセキュリティモデルは、アクセスを許可する前にすべての受信要求を検証する。
この章はゼロトラストモデルにおけるサイバーレジリエンスに注意を向けている。
従来の周辺セキュリティからゼロ信頼への進化を紹介し,その違いについて議論する。
ゼロトラストエンジンの2つの重要な要素は、信頼評価(TE)とポリシーエンジン(PE)である。
2つのコンポーネントの設計を紹介し、それらの相互作用がサイバーレジリエンスにどのように貢献するかについて議論する。
動的ゲーム理論と学習は、ゼロトラストサイバーレジリエンスの自動化を実現するための定量的アプローチとして応用される。
このようなセキュリティモデルの利点を説明するために、いくつかのケーススタディと実装が導入されている。
関連論文リスト
- Authentication and identity management based on zero trust security model in micro-cloud environment [0.0]
Zero Trustフレームワークは、クラウドパラダイムにおけるインサイダー攻撃によるセキュリティ侵害を抑えながら、外部攻撃者を追跡してブロックすることができる。
本稿では,リソースへのアクセス制御の確立のために,認証機構,信頼スコアの算出,ポリシの生成に焦点をあてる。
論文 参考訳(メタデータ) (2024-10-29T09:06:13Z) - GAN-GRID: A Novel Generative Attack on Smart Grid Stability Prediction [53.2306792009435]
我々は,現実の制約に合わせたスマートグリッドの安定性予測システムを対象とした,新たな敵攻撃GAN-GRIDを提案する。
以上の結果から,データやモデル知識を欠いた,安定度モデルのみに武装した敵が,攻撃成功率0.99の安定度でデータを作成できることが判明した。
論文 参考訳(メタデータ) (2024-05-20T14:43:46Z) - Securing Federated Learning with Control-Flow Attestation: A Novel Framework for Enhanced Integrity and Resilience against Adversarial Attacks [2.28438857884398]
分散機械学習パラダイムとしてのフェデレートラーニング(FL)は、新たなサイバーセキュリティ課題を導入した。
本研究では,従来サイバーセキュリティに用いられてきた制御フロー(CFA)機構にインスパイアされた,革新的なセキュリティフレームワークを提案する。
我々は、ネットワーク全体にわたるモデル更新の完全性を認証し、検証し、モデル中毒や敵対的干渉に関連するリスクを効果的に軽減する。
論文 参考訳(メタデータ) (2024-03-15T04:03:34Z) - A Zero Trust Framework for Realization and Defense Against Generative AI
Attacks in Power Grid [62.91192307098067]
本稿では電力グリッドサプライチェーン(PGSC)のための新しいゼロ信頼フレームワークを提案する。
潜在的なGenAIによる攻撃ベクターの早期発見、テールリスクに基づく安定性の評価、そしてそのような脅威の緩和を容易にする。
実験の結果,ゼロ信頼フレームワークは攻撃ベクトル生成に95.7%の精度,95%安定PGSCに9.61%のリスク尺度,GenAIによる攻撃に対する防御に99%の信頼性が得られた。
論文 参考訳(メタデータ) (2024-03-11T02:47:21Z) - Zero Trust: Applications, Challenges, and Opportunities [0.0]
この調査は、ゼロトラストの理論的基礎、実践的実装、応用、課題、今後のトレンドを包括的に調査する。
クラウド環境の保護、リモートワークの促進、IoT(Internet of Things)エコシステムの保護におけるZero Trustの意義を強調します。
Zero TrustをAIや機械学習といった新興技術と統合することは、その有効性を高め、動的で応答性のあるセキュリティの展望を約束する。
論文 参考訳(メタデータ) (2023-09-07T09:23:13Z) - When Authentication Is Not Enough: On the Security of Behavioral-Based Driver Authentication Systems [53.2306792009435]
我々はランダムフォレストとリカレントニューラルネットワークアーキテクチャに基づく2つの軽量ドライバ認証システムを開発した。
我々は,SMARTCANとGANCANという2つの新しいエスケープアタックを開発することで,これらのシステムに対する攻撃を最初に提案する。
コントリビューションを通じて、これらのシステムを安全に採用する実践者を支援し、車の盗難を軽減し、ドライバーのセキュリティを高める。
論文 参考訳(メタデータ) (2023-06-09T14:33:26Z) - Scenario-Agnostic Zero-Trust Defense with Explainable Threshold Policy:
A Meta-Learning Approach [20.11993437283895]
本稿では,部分観測可能なマルコフ決定プロセス(POMDP)と一次メタラーニングに基づくシナリオに依存しないゼロトラスト防御を提案する。
ケーススタディと実世界の攻撃を使って結果を裏付ける。
論文 参考訳(メタデータ) (2023-03-06T18:35:34Z) - Resilient Risk based Adaptive Authentication and Authorization (RAD-AA)
Framework [3.9858496473361402]
リスクスコアと信頼プロファイルに基づいて自己適応が可能なセキュアでレジリエントな認証・認可フレームワークの設計について検討する。
私たちはこのフレームワークを、レジリエントなリスクベースのAdaptive Authentication and Authorization(RAD-AA)と呼んでいる。
論文 参考訳(メタデータ) (2022-08-04T11:44:29Z) - Adversarial Attacks on ML Defense Models Competition [82.37504118766452]
清華大学のTSAILグループとAlibaba Securityグループがこの競争を組織した。
この競争の目的は、敵の堅牢性を評価するために、新しい攻撃アルゴリズムを動機付けることである。
論文 参考訳(メタデータ) (2021-10-15T12:12:41Z) - Certifiers Make Neural Networks Vulnerable to Availability Attacks [70.69104148250614]
私たちは初めて、逆転戦略が敵によって意図的に引き起こされる可能性があることを示します。
いくつかの入力や摂動のために自然に発生する障害に加えて、敵は故意にフォールバックを誘発するために訓練時間攻撃を使用することができる。
我々は2つの新しいアベイラビリティーアタックを設計し、これらの脅威の実用的妥当性を示す。
論文 参考訳(メタデータ) (2021-08-25T15:49:10Z) - Privacy and Robustness in Federated Learning: Attacks and Defenses [74.62641494122988]
このトピックに関する最初の包括的な調査を実施します。
FLの概念の簡潔な紹介と、1脅威モデル、2堅牢性に対する中毒攻撃と防御、3プライバシーに対する推論攻撃と防御、というユニークな分類学を通じて、私たちはこの重要なトピックのアクセス可能なレビューを提供します。
論文 参考訳(メタデータ) (2020-12-07T12:11:45Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。