Early warning indicators via latent stochastic dynamical systems
- URL: http://arxiv.org/abs/2309.03842v3
- Date: Fri, 5 Apr 2024 11:10:27 GMT
- Title: Early warning indicators via latent stochastic dynamical systems
- Authors: Lingyu Feng, Ting Gao, Wang Xiao, Jinqiao Duan,
- Abstract summary: We develop an anisotropic diffusion map that captures the latent evolutionary dynamics in the low-dimensional manifold.
Three effective warning signals are derived through the latent coordinates and the latent dynamical systems.
We find that our early warning indicators are capable of detecting the tipping point during state transition.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Detecting early warning indicators for abrupt dynamical transitions in complex systems or high-dimensional observation data is essential in many real-world applications, such as brain diseases, natural disasters, and engineering reliability. To this end, we develop a novel approach: the directed anisotropic diffusion map that captures the latent evolutionary dynamics in the low-dimensional manifold. Then three effective warning signals (Onsager-Machlup Indicator, Sample Entropy Indicator, and Transition Probability Indicator) are derived through the latent coordinates and the latent stochastic dynamical systems. To validate our framework, we apply this methodology to authentic electroencephalogram (EEG) data. We find that our early warning indicators are capable of detecting the tipping point during state transition. This framework not only bridges the latent dynamics with real-world data but also shows the potential ability for automatic labeling on complex high-dimensional time series.
Related papers
- A Poisson-Gamma Dynamic Factor Model with Time-Varying Transition Dynamics [51.147876395589925]
A non-stationary PGDS is proposed to allow the underlying transition matrices to evolve over time.
A fully-conjugate and efficient Gibbs sampler is developed to perform posterior simulation.
Experiments show that, in comparison with related models, the proposed non-stationary PGDS achieves improved predictive performance.
arXiv Detail & Related papers (2024-02-26T04:39:01Z) - Jointly Modeling Spatio-Temporal Features of Tactile Signals for Action Classification [50.63919418371698]
Tactile signals collected by wearable electronics are essential in modeling and understanding human behavior.
Existing action classification methods fail to capture the spatial and temporal features of tactile signals simultaneously.
We propose S-Temporal Aware Aware Transformer (STAT) to utilize continuous tactile signals for action classification.
arXiv Detail & Related papers (2024-01-21T03:47:57Z) - Tipping Points of Evolving Epidemiological Networks: Machine
Learning-Assisted, Data-Driven Effective Modeling [0.0]
We study the tipping point collective dynamics of an adaptive susceptible-infected (SIS) epidemiological network in a data-driven, machine learning-assisted manner.
We identify a complex effective differential equation (eSDE) in terms physically meaningful coarse mean-field variables.
We study the statistics of rare events both through repeated brute force simulations and by using established mathematical/computational tools.
arXiv Detail & Related papers (2023-11-01T19:33:03Z) - DGSD: Dynamical Graph Self-Distillation for EEG-Based Auditory Spatial
Attention Detection [49.196182908826565]
Auditory Attention Detection (AAD) aims to detect target speaker from brain signals in a multi-speaker environment.
Current approaches primarily rely on traditional convolutional neural network designed for processing Euclidean data like images.
This paper proposes a dynamical graph self-distillation (DGSD) approach for AAD, which does not require speech stimuli as input.
arXiv Detail & Related papers (2023-09-07T13:43:46Z) - Sequential Attention Source Identification Based on Feature
Representation [88.05527934953311]
This paper proposes a sequence-to-sequence based localization framework called Temporal-sequence based Graph Attention Source Identification (TGASI) based on an inductive learning idea.
It's worth mentioning that the inductive learning idea ensures that TGASI can detect the sources in new scenarios without knowing other prior knowledge.
arXiv Detail & Related papers (2023-06-28T03:00:28Z) - DynamoPMU: A Physics Informed Anomaly Detection and Prediction
Methodology using non-linear dynamics from $\mu$PMU Measurement Data [0.0]
We develop a physics dynamics-based approach to detect anomalies in the $mu$PMU streaming data and simultaneously predict the events using governing equations.
We demonstrate the efficacy of our proposed framework through analysis of real $mu$PMU data taken from the LBNL distribution grid.
arXiv Detail & Related papers (2023-03-31T19:32:24Z) - Latent Temporal Flows for Multivariate Analysis of Wearables Data [0.9990687944474738]
We introduce Latent Temporal Flows, a method for multivariate time-series modeling tailored to this setting.
We show that the proposed method consistently outperforms the state-of-the-art in multi-step forecasting benchmarks.
arXiv Detail & Related papers (2022-10-14T02:54:34Z) - Universal Early Warning Signals of Phase Transitions in Climate Systems [0.586336038845426]
A deep neural network trained exclusively on 2D Ising model phase transitions is tested on a number of real and simulated climate systems.
Its accuracy frequently surpasses that of conventional statistical indicators, with performance shown to be consistently improved by the inclusion of spatial indicators.
arXiv Detail & Related papers (2022-05-31T19:07:15Z) - DriPP: Driven Point Processes to Model Stimuli Induced Patterns in M/EEG
Signals [62.997667081978825]
We develop a novel statistical point process model-called driven temporal point processes (DriPP)
We derive a fast and principled expectation-maximization (EM) algorithm to estimate the parameters of this model.
Results on standard MEG datasets demonstrate that our methodology reveals event-related neural responses.
arXiv Detail & Related papers (2021-12-08T13:07:21Z) - Learning Dynamical Systems from Noisy Sensor Measurements using Multiple
Shooting [11.771843031752269]
We introduce a generic and scalable method to learn latent representations of indirectly observed dynamical systems.
We achieve state-of-the-art performances on systems observed directly from raw images.
arXiv Detail & Related papers (2021-06-22T12:30:18Z) - Stochastically forced ensemble dynamic mode decomposition for
forecasting and analysis of near-periodic systems [65.44033635330604]
We introduce a novel load forecasting method in which observed dynamics are modeled as a forced linear system.
We show that its use of intrinsic linear dynamics offers a number of desirable properties in terms of interpretability and parsimony.
Results are presented for a test case using load data from an electrical grid.
arXiv Detail & Related papers (2020-10-08T20:25:52Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.