論文の概要: An Introductory Review of Spiking Neural Network and Artificial Neural
Network: From Biological Intelligence to Artificial Intelligence
- arxiv url: http://arxiv.org/abs/2204.07519v1
- Date: Sat, 9 Apr 2022 09:34:34 GMT
- ステータス: 処理完了
- システム内更新日: 2022-04-24 18:41:35.971994
- Title: An Introductory Review of Spiking Neural Network and Artificial Neural
Network: From Biological Intelligence to Artificial Intelligence
- Title(参考訳): スパイクニューラルネットワークとニューラルネットワークの紹介:生物学的知性から人工知能まで
- Authors: Shengjie Zheng, Lang Qian, Pingsheng Li, Chenggang He, Xiaoqin Qin,
Xiaojian Li
- Abstract要約: 生物学的解釈可能性を持つスパイクニューラルネットワークは、徐々に注目を集めている。
このレビューは、さまざまな研究者を惹きつけ、脳にインスパイアされた知性と人工知能の開発を進めたいと考えている。
- 参考スコア(独自算出の注目度): 4.697611383288171
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Recently, stemming from the rapid development of artificial intelligence,
which has gained expansive success in pattern recognition, robotics, and
bioinformatics, neuroscience is also gaining tremendous progress. A kind of
spiking neural network with biological interpretability is gradually receiving
wide attention, and this kind of neural network is also regarded as one of the
directions toward general artificial intelligence. This review introduces the
following sections, the biological background of spiking neurons and the
theoretical basis, different neuronal models, the connectivity of neural
circuits, the mainstream neural network learning mechanisms and network
architectures, etc. This review hopes to attract different researchers and
advance the development of brain-inspired intelligence and artificial
intelligence.
- Abstract(参考訳): 近年、パターン認識、ロボティクス、バイオインフォマティクスで大きな成功を収めた人工知能の急速な発展に起因して、神経科学も飛躍的な進歩を遂げている。
生物学的に解釈可能なスパイキングニューラルネットワークが徐々に注目され始めており、このタイプのニューラルネットワークは汎用人工知能への方向の1つと見なされている。
本稿では, スパイキングニューロンの生物学的背景, 理論的基礎, 異なるニューロンモデル, 神経回路の接続性, 主流のニューラルネットワーク学習機構, ネットワークアーキテクチャなどを紹介する。
このレビューは、さまざまな研究者を惹きつけ、脳にインスパイアされた知性と人工知能の開発を進めたいと考えている。
関連論文リスト
- Enhancing learning in spiking neural networks through neuronal heterogeneity and neuromodulatory signaling [52.06722364186432]
人工ニューラルネットワーク(ANN)の強化のための生物学的インフォームドフレームワークを提案する。
提案したデュアルフレームアプローチは、多様なスパイキング動作をエミュレートするためのスパイキングニューラルネットワーク(SNN)の可能性を強調している。
提案手法は脳にインスパイアされたコンパートメントモデルとタスク駆動型SNN, バイオインスピレーション, 複雑性を統合している。
論文 参考訳(メタデータ) (2024-07-05T14:11:28Z) - Brain-Inspired Machine Intelligence: A Survey of
Neurobiologically-Plausible Credit Assignment [65.268245109828]
本稿では,神経生物学にインスパイアされた,あるいは動機付けられた人工ニューラルネットワークにおける信用割当を行うアルゴリズムについて検討する。
我々は、脳にインスパイアされた学習スキームを6つの一般的なファミリーにまとめ、これらを誤りのバックプロパゲーションの文脈で検討する。
本研究の成果は,神経ミメティックシステムとその構成的学習プロセスの今後の発展を促進することを目的としている。
論文 参考訳(メタデータ) (2023-12-01T05:20:57Z) - A Neuro-mimetic Realization of the Common Model of Cognition via Hebbian
Learning and Free Energy Minimization [55.11642177631929]
大規模なニューラル生成モデルは、意味的に豊富なテキストのパスを合成したり、複雑な画像を生成することができる。
我々はコモン・モデル・オブ・コグニティブ・ニューラル・ジェネレーティブ・システムについて論じる。
論文 参考訳(メタデータ) (2023-10-14T23:28:48Z) - Advanced Computing and Related Applications Leveraging Brain-inspired
Spiking Neural Networks [0.0]
スパイクニューラルネットワークは、脳に似たコンピューティングを実現する人工知能のコアの1つである。
本稿では,5つのニューロンモデルの強み,弱さ,適用性について要約し,5つのネットワークトポロジの特徴を解析する。
論文 参考訳(メタデータ) (2023-09-08T16:41:08Z) - Brain-inspired learning in artificial neural networks: a review [5.064447369892274]
人工ニューラルネットワークにおける脳にインスパイアされた学習表現について概説する。
これらのネットワークの能力を高めるために, シナプス可塑性などの生物学的に妥当な機構の統合について検討する。
論文 参考訳(メタデータ) (2023-05-18T18:34:29Z) - Contrastive-Signal-Dependent Plasticity: Self-Supervised Learning in Spiking Neural Circuits [61.94533459151743]
この研究は、スパイキングネットワークのシナプスを調整するための神経生物学的に動機づけられたスキームを設計することの課題に対処する。
我々の実験シミュレーションは、繰り返しスパイクネットワークを訓練する際、他の生物学的に証明可能なアプローチに対して一貫した優位性を示す。
論文 参考訳(メタデータ) (2023-03-30T02:40:28Z) - Towards NeuroAI: Introducing Neuronal Diversity into Artificial Neural
Networks [20.99799416963467]
ヒトの脳では、神経の多様性はあらゆる生物学的知的行動に有効である。
本稿では,まず,生物ニューロンの多様性と情報伝達・処理の特徴について論じる。
論文 参考訳(メタデータ) (2023-01-23T02:23:45Z) - Constraints on the design of neuromorphic circuits set by the properties
of neural population codes [61.15277741147157]
脳内では、情報はコード化され、伝達され、行動を伝えるために使用される。
ニューロモルフィック回路は、脳内のニューロンの集団が使用するものと互換性のある方法で情報を符号化する必要がある。
論文 参考訳(メタデータ) (2022-12-08T15:16:04Z) - Brain-inspired Graph Spiking Neural Networks for Commonsense Knowledge
Representation and Reasoning [11.048601659933249]
神経科学、認知科学、心理学、人工知能において、人間の脳におけるニューラルネットワークがどのように常識知識を表現するかは重要な研究トピックである。
本研究は, 個体群エンコーディングとスパイクタイミング依存的可塑性(STDP)機構をスパイクニューラルネットワークの学習に組み込む方法について検討する。
異なるコミュニティのニューロン集団は、コモンセンス知識グラフ全体を構成し、巨大なグラフがニューラルネットワークをスパイクする。
論文 参考訳(メタデータ) (2022-07-11T05:22:38Z) - POPPINS : A Population-Based Digital Spiking Neuromorphic Processor with
Integer Quadratic Integrate-and-Fire Neurons [50.591267188664666]
2つの階層構造を持つ180nmプロセス技術において,集団に基づくディジタルスパイキングニューロモルフィックプロセッサを提案する。
提案手法は,生体模倣型ニューロモルフィックシステム,低消費電力,低遅延推論処理アプリケーションの開発を可能にする。
論文 参考訳(メタデータ) (2022-01-19T09:26:34Z) - Neural Networks, Artificial Intelligence and the Computational Brain [0.0]
本研究では、生物ニューロンのシミュレータとしてのANNの概念を検討する。
また、なぜ脳のような知能が必要なのか、そしてそれが計算フレームワークとどのように異なるのかを探求する。
論文 参考訳(メタデータ) (2020-12-25T05:56:41Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。