論文の概要: Video and Synthetic MRI Pre-training of 3D Vision Architectures for
Neuroimage Analysis
- arxiv url: http://arxiv.org/abs/2309.04651v1
- Date: Sat, 9 Sep 2023 00:33:23 GMT
- ステータス: 処理完了
- システム内更新日: 2023-09-12 17:17:29.168614
- Title: Video and Synthetic MRI Pre-training of 3D Vision Architectures for
Neuroimage Analysis
- Title(参考訳): 神経画像解析のための3次元視覚構造の映像と合成MRI前処理
- Authors: Nikhil J. Dhinagar, Amit Singh, Saket Ozarkar, Ketaki Buwa, Sophia I.
Thomopoulos, Conor Owens-Walton, Emily Laltoo, Yao-Liang Chen, Philip Cook,
Corey McMillan, Chih-Chien Tsai, J-J Wang, Yih-Ru Wu, Paul M. Thompson
- Abstract要約: トランスファーラーニングは、特定のタスクに適応するために、大規模なデータコーパスでディープラーニングモデルを事前訓練することを含む。
視覚変換器 (ViTs) と畳み込みニューラルネットワーク (CNNs) のベンチマークを行った。
得られた事前訓練されたモデルは、ターゲットタスクのトレーニングデータが制限されている場合でも、さまざまな下流タスクに適応することができる。
- 参考スコア(独自算出の注目度): 3.208731414009847
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Transfer learning represents a recent paradigm shift in the way we build
artificial intelligence (AI) systems. In contrast to training task-specific
models, transfer learning involves pre-training deep learning models on a large
corpus of data and minimally fine-tuning them for adaptation to specific tasks.
Even so, for 3D medical imaging tasks, we do not know if it is best to
pre-train models on natural images, medical images, or even synthetically
generated MRI scans or video data. To evaluate these alternatives, here we
benchmarked vision transformers (ViTs) and convolutional neural networks
(CNNs), initialized with varied upstream pre-training approaches. These methods
were then adapted to three unique downstream neuroimaging tasks with a range of
difficulty: Alzheimer's disease (AD) and Parkinson's disease (PD)
classification, "brain age" prediction. Experimental tests led to the following
key observations: 1. Pre-training improved performance across all tasks
including a boost of 7.4% for AD classification and 4.6% for PD classification
for the ViT and 19.1% for PD classification and reduction in brain age
prediction error by 1.26 years for CNNs, 2. Pre-training on large-scale video
or synthetic MRI data boosted performance of ViTs, 3. CNNs were robust in
limited-data settings, and in-domain pretraining enhanced their performances,
4. Pre-training improved generalization to out-of-distribution datasets and
sites. Overall, we benchmarked different vision architectures, revealing the
value of pre-training them with emerging datasets for model initialization. The
resulting pre-trained models can be adapted to a range of downstream
neuroimaging tasks, even when training data for the target task is limited.
- Abstract(参考訳): トランスファーラーニングは、人工知能(AI)システム構築における最近のパラダイムシフトを表している。
タスク固有のトレーニングモデルとは対照的に、トランスファーラーニングでは、大規模なデータコーパス上でディープラーニングモデルを事前訓練し、特定のタスクに適応するための最小限の微調整を行う。
それでも、3D医療画像のタスクでは、自然画像や医用画像、あるいは人工的に生成されたMRIスキャンやビデオデータでモデルを事前訓練するのが最善かどうかわからない。
これらの代替品を評価するために、我々は視覚変換器(ViT)と畳み込みニューラルネットワーク(CNN)をベンチマークし、様々な上流トレーニングアプローチで初期化した。
これらの手法は、アルツハイマー病(AD)とパーキンソン病(PD)の分類、脳年齢予測という、様々な困難を伴う3つの下流神経画像タスクに適応された。
実験の結果、以下の重要な観測結果が得られた。
1 前訓練は、広告分類の7.4%、vitのpd分類の4.6%、pd分類の19.1%、cnnの脳年齢予測誤差の1.26年短縮など、すべてのタスクでパフォーマンスが向上した。
2. 大規模ビデオ・合成MRIデータの事前学習によるVTの性能向上
3. CNNは限られたデータ設定で堅牢であり、ドメイン内の事前トレーニングによってパフォーマンスが向上した。
4. 事前トレーニングは、配布外データセットとサイトへの一般化を改善した。
全体として、さまざまなビジョンアーキテクチャをベンチマークし、モデル初期化のための新たなデータセットを事前トレーニングする価値を明らかにしました。
得られた事前訓練されたモデルは、目標タスクのトレーニングデータが制限されている場合でも、下流のニューロイメージングタスクに適応することができる。
関連論文リスト
- Domain Aware Multi-Task Pretraining of 3D Swin Transformer for T1-weighted Brain MRI [4.453300553789746]
脳磁気共鳴画像(MRI)のための3次元スイム変換器の事前訓練のためのドメイン認識型マルチタスク学習タスクを提案する。
脳の解剖学と形態学を取り入れた脳MRIの領域知識と、対照的な学習環境での3Dイメージングに適応した標準的な前提課題を考察した。
本手法は,アルツハイマー病の分類,パーキンソン病の分類,年齢予測の3つの下流課題において,既存の指導的・自己監督的手法よりも優れていた。
論文 参考訳(メタデータ) (2024-10-01T05:21:02Z) - Self-Supervised Pretext Tasks for Alzheimer's Disease Classification using 3D Convolutional Neural Networks on Large-Scale Synthetic Neuroimaging Dataset [11.173478552040441]
アルツハイマー病(Alzheimer's Disease, AD)は、脳の局所的および広範な神経変性を誘導する疾患である。
本研究では、下流ADとCN分類のための特徴抽出器を訓練するための教師なし手法をいくつか評価した。
論文 参考訳(メタデータ) (2024-06-20T11:26:32Z) - Predicting Infant Brain Connectivity with Federated Multi-Trajectory
GNNs using Scarce Data [54.55126643084341]
既存のディープラーニングソリューションには,3つの大きな制限がある。
我々はフェデレートグラフベースの多軌道進化ネットワークであるFedGmTE-Net++を紹介する。
フェデレーションの力を利用して、限られたデータセットを持つ多種多様な病院の地域学習を集約する。
論文 参考訳(メタデータ) (2024-01-01T10:20:01Z) - The effect of data augmentation and 3D-CNN depth on Alzheimer's Disease
detection [51.697248252191265]
この研究は、データハンドリング、実験設計、モデル評価に関するベストプラクティスを要約し、厳密に観察する。
我々は、アルツハイマー病(AD)の検出に焦点を当て、医療における課題のパラダイム的な例として機能する。
このフレームワークでは,3つの異なるデータ拡張戦略と5つの異なる3D CNNアーキテクチャを考慮し,予測15モデルを訓練する。
論文 参考訳(メタデータ) (2023-09-13T10:40:41Z) - LVM-Med: Learning Large-Scale Self-Supervised Vision Models for Medical
Imaging via Second-order Graph Matching [59.01894976615714]
LVM-Medは、大規模医療データセットに基づいてトレーニングされた、最初のディープネットワークファミリーである。
55の公開データセットから約13万の医療画像を収集しました。
LVM-Medは、多くの最先端の教師付き、自己監督型、基礎モデルよりも経験的に優れている。
論文 参考訳(メタデータ) (2023-06-20T22:21:34Z) - Video Pretraining Advances 3D Deep Learning on Chest CT Tasks [63.879848037679224]
大規模自然画像分類データセットの事前学習は、データスカース2D医療タスクのモデル開発に役立っている。
これらの2Dモデルは、3Dコンピュータビジョンベンチマークで3Dモデルに勝っている。
3Dモデルのためのビデオ事前トレーニングにより、より小さなデータセットでより高性能な3D医療タスクを実現することができることを示す。
論文 参考訳(メタデータ) (2023-04-02T14:46:58Z) - Efficiently Training Vision Transformers on Structural MRI Scans for
Alzheimer's Disease Detection [2.359557447960552]
ビジョントランスフォーマー(ViT)は近年、コンピュータビジョンアプリケーションのためのCNNの代替として登場した。
難易度に基づいて,脳神経画像の下流タスクに対するViTアーキテクチャの変種を検証した。
合成および実MRIスキャンで事前訓練した微調整型視覚変換器モデルを用いて、5%と9-10%の性能向上を実現した。
論文 参考訳(メタデータ) (2023-03-14T20:18:12Z) - Unsupervised Pre-Training on Patient Population Graphs for Patient-Level
Predictions [48.02011627390706]
プレトレーニングは、コンピュータビジョン(CV)、自然言語処理(NLP)、医療画像など、機械学習のさまざまな分野で成功している。
本稿では,患者結果の予測のために,教師なし事前学習を異種マルチモーダルEHRデータに適用する。
提案手法は,人口レベルでのデータモデリングに有効であることがわかった。
論文 参考訳(メタデータ) (2022-03-23T17:59:45Z) - DeepAD: A Robust Deep Learning Model of Alzheimer's Disease Progression
for Real-World Clinical Applications [0.9999629695552196]
本稿では,アルツハイマー病の進行を予測するための新しいマルチタスク深層学習モデルを提案する。
本モデルでは,3次元畳み込みニューラルネットワークの高次元MRI特徴を他のデータモダリティと統合する。
論文 参考訳(メタデータ) (2022-03-17T05:42:00Z) - Advancing 3D Medical Image Analysis with Variable Dimension Transform
based Supervised 3D Pre-training [45.90045513731704]
本稿では,革新的でシンプルな3Dネットワーク事前学習フレームワークを再考する。
再設計された3Dネットワークアーキテクチャにより、データ不足の問題に対処するために、修正された自然画像が使用される。
4つのベンチマークデータセットに関する総合的な実験により、提案した事前学習モデルが収束を効果的に加速できることが示されている。
論文 参考訳(メタデータ) (2022-01-05T03:11:21Z) - Self-Supervised Pretraining Improves Self-Supervised Pretraining [83.1423204498361]
自己教師付き事前トレーニングには、高価で長い計算と大量のデータが必要で、データ拡張に敏感である。
本稿では,既存の事前学習モデルを用いて事前学習プロセスを初期化することにより,収束時間を短縮し,精度を向上させる階層的事前学習(HPT)について検討する。
HPTが最大80倍速く収束し、タスク全体の精度が向上し、自己監視された事前トレーニングプロセスの堅牢性が、画像増強ポリシーまたは事前トレーニングデータの量の変化に改善されることを示します。
論文 参考訳(メタデータ) (2021-03-23T17:37:51Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。