論文の概要: Ansatz-Agnostic Exponential Resource Saving in Variational Quantum
Algorithms Using Shallow Shadows
- arxiv url: http://arxiv.org/abs/2309.04754v1
- Date: Sat, 9 Sep 2023 11:00:39 GMT
- ステータス: 処理完了
- システム内更新日: 2023-09-12 16:37:44.717076
- Title: Ansatz-Agnostic Exponential Resource Saving in Variational Quantum
Algorithms Using Shallow Shadows
- Title(参考訳): 浅影を用いた変分量子アルゴリズムにおけるAnsatz-Agnostic Exponential Resourcesの削減
- Authors: Afrad Basheer, Yuan Feng, Christopher Ferrie, Sanjiang Li
- Abstract要約: 変分量子アルゴリズム(VQA)は、短期的な量子優位性の実証の有望な候補として特定されている。
本報告では,本論文で研究されている浅層アンザッツに対して,同様のレベルの貯蓄を実現するための浅層影に基づくプロトコルを提案する。
VQAが強力な選択肢となる量子情報、すなわち変分量子状態準備と変分量子回路合成の2つの重要な応用が示されている。
- 参考スコア(独自算出の注目度): 5.618657159109373
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Variational Quantum Algorithms (VQA) have been identified as a promising
candidate for the demonstration of near-term quantum advantage in solving
optimization tasks in chemical simulation, quantum information, and machine
learning. The standard model of training requires a significant amount of
quantum resources, which led us to use classical shadows to devise an
alternative that consumes exponentially fewer quantum resources. However, the
approach only works when the observables are local and the ansatz is the
shallow Alternating Layered Ansatz (ALA), thus severely limiting its potential
in solving problems such as quantum state preparation, where the ideal state
might not be approximable with an ALA. In this work, we present a protocol
based on shallow shadows that achieves similar levels of savings for almost any
shallow ansatz studied in the literature, when combined with observables of low
Frobenius norm. We show that two important applications in quantum information
for which VQAs can be a powerful option, namely variational quantum state
preparation and variational quantum circuit synthesis, are compatible with our
protocol. We also experimentally demonstrate orders of magnitude improvement in
comparison to the standard VQA model.
- Abstract(参考訳): 変分量子アルゴリズム(VQA)は、化学シミュレーション、量子情報、機械学習における最適化タスクの解決における短期的な量子優位性の実証の候補として特定されている。
トレーニングの標準モデルは膨大な量の量子リソースを必要とするため、古典的な影を使って指数的に少ない量子リソースを消費する代替品を考案しました。
しかし、このアプローチは観測可能が局所的であり、アンザッツが浅い交互層アンザッツ (ALA) である場合にのみ有効であり、したがって理想状態がALAと近似できないような量子状態の準備のような問題の解決においてそのポテンシャルを著しく制限する。
本研究では,低フロベニウスノルムの観測可能量と組み合わせることで,文献で研究されるほぼすべての浅層アンザッツに対して,同様のレベルの貯蓄を実現する浅層影に基づくプロトコルを提案する。
VQAが強力な選択肢である量子情報、すなわち変分量子状態準備と変分量子回路合成の2つの重要な応用が、我々のプロトコルと互換性があることが示されている。
また,標準VQAモデルと比較して,大域的改善の順序を実験的に示す。
関連論文リスト
- Efficient Learning for Linear Properties of Bounded-Gate Quantum Circuits [63.733312560668274]
d可変RZゲートとG-dクリフォードゲートを含む量子回路を与えられた場合、学習者は純粋に古典的な推論を行い、その線形特性を効率的に予測できるだろうか?
我々は、d で線形にスケーリングするサンプルの複雑さが、小さな予測誤差を達成するのに十分であり、対応する計算の複雑さは d で指数関数的にスケールすることを証明する。
我々は,予測誤差と計算複雑性をトレードオフできるカーネルベースの学習モデルを考案し,多くの実践的な環境で指数関数からスケーリングへ移行した。
論文 参考訳(メタデータ) (2024-08-22T08:21:28Z) - A Quantum-Classical Collaborative Training Architecture Based on Quantum
State Fidelity [50.387179833629254]
我々は,コ・テンク (co-TenQu) と呼ばれる古典量子アーキテクチャを導入する。
Co-TenQuは古典的なディープニューラルネットワークを41.72%まで向上させる。
他の量子ベースの手法よりも1.9倍も優れており、70.59%少ない量子ビットを使用しながら、同様の精度を達成している。
論文 参考訳(メタデータ) (2024-02-23T14:09:41Z) - Hybrid Quantum Classical Simulations [0.0]
量子コンピューティングの2つの主要なハイブリッド応用、すなわち量子近似最適化アルゴリズム(QAOA)と変分量子固有解法(VQE)について報告する。
どちらも、古典的な中央処理ユニットと量子処理ユニットの間の漸進的な通信を必要とするため、ハイブリッド量子古典アルゴリズムである。
論文 参考訳(メタデータ) (2022-10-06T10:49:15Z) - Fundamental limitations on optimization in variational quantum
algorithms [7.165356904023871]
そのような短期量子アプリケーションを確立するための主要なパラダイムは、変分量子アルゴリズム(VQA)である。
このようなランダム回路の幅広いクラスにおいて、コスト関数の変動範囲は、高い確率で量子ビット数で指数関数的に消えることを示す。
この結果は、勾配に基づく最適化と勾配のない最適化の制約を自然に統一し、VQAのトレーニングランドスケープに余分な厳しい制約を明らかにすることができる。
論文 参考訳(メタデータ) (2022-05-10T17:14:57Z) - Variational Quantum-Neural Hybrid Error Mitigation [6.555128824546528]
量子エラー軽減(QEM)は、量子コンピュータ上で信頼性の高い結果を得るために重要である。
量子-ニューラルハイブリッド固有解法 (VQNHE) アルゴリズムは, 本質的にはノイズ耐性であり, ユニークなQEM容量を持つことを示す。
論文 参考訳(メタデータ) (2021-12-20T08:07:58Z) - Quantum algorithms for quantum dynamics: A performance study on the
spin-boson model [68.8204255655161]
量子力学シミュレーションのための量子アルゴリズムは、伝統的に時間進化作用素のトロッター近似の実装に基づいている。
変分量子アルゴリズムは欠かせない代替手段となり、現在のハードウェア上での小規模なシミュレーションを可能にしている。
量子ゲートコストが明らかに削減されているにもかかわらず、現在の実装における変分法は量子的優位性をもたらすことはありそうにない。
論文 参考訳(メタデータ) (2021-08-09T18:00:05Z) - On exploring the potential of quantum auto-encoder for learning quantum systems [60.909817434753315]
そこで我々は,古典的な3つのハードラーニング問題に対処するために,QAEに基づく効果的な3つの学習プロトコルを考案した。
私たちの研究は、ハード量子物理学と量子情報処理タスクを達成するための高度な量子学習アルゴリズムの開発に新たな光を当てています。
論文 参考訳(メタデータ) (2021-06-29T14:01:40Z) - Error mitigation and quantum-assisted simulation in the error corrected
regime [77.34726150561087]
量子コンピューティングの標準的なアプローチは、古典的にシミュレート可能なフォールトトレラントな演算セットを促進するという考え方に基づいている。
量子回路の古典的準確率シミュレーションをどのように促進するかを示す。
論文 参考訳(メタデータ) (2021-03-12T20:58:41Z) - Quantum circuit architecture search for variational quantum algorithms [88.71725630554758]
本稿では、QAS(Quantum Architecture Search)と呼ばれるリソースと実行時の効率的なスキームを提案する。
QASは、よりノイズの多い量子ゲートを追加することで得られる利点と副作用のバランスをとるために、自動的にほぼ最適アンサッツを求める。
数値シミュレータと実量子ハードウェアの両方に、IBMクラウドを介してQASを実装し、データ分類と量子化学タスクを実現する。
論文 参考訳(メタデータ) (2020-10-20T12:06:27Z) - Minimizing estimation runtime on noisy quantum computers [0.0]
ベイズ推論の実行には、ELF(Engineered chance function)が用いられる。
物理ハードウェアがノイズの多い量子コンピュータの仕組みから遷移するにつれて,ELF形式がサンプリングにおける情報ゲイン率をいかに向上させるかを示す。
この技術は、化学、材料、ファイナンスなどを含む多くの量子アルゴリズムの中心的なコンポーネントを高速化する。
論文 参考訳(メタデータ) (2020-06-16T17:46:18Z) - Policy Gradient based Quantum Approximate Optimization Algorithm [2.5614220901453333]
本稿では,QAOAの変動パラメータをノイズキャンバス方式で最適化するために,政策段階に基づく強化学習アルゴリズムが適していることを示す。
単一および多ビット系における量子状態伝達問題に対するアルゴリズムの性能解析を行う。
論文 参考訳(メタデータ) (2020-02-04T00:46:51Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。