論文の概要: A physics-informed and attention-based graph learning approach for
regional electric vehicle charging demand prediction
- arxiv url: http://arxiv.org/abs/2309.05259v2
- Date: Mon, 6 Nov 2023 06:35:11 GMT
- ステータス: 処理完了
- システム内更新日: 2023-11-07 21:02:14.507725
- Title: A physics-informed and attention-based graph learning approach for
regional electric vehicle charging demand prediction
- Title(参考訳): 物理インフォームド・アテンションに基づく地域電気自動車充電需要予測のためのグラフ学習手法
- Authors: Haohao Qu, Haoxuan Kuang, Jun Li, Linlin You
- Abstract要約: 本稿では,特徴抽出のためのグラフと時間的注意機構の統合を実現する新しい手法を提案する。
中国深センの18,013台のEV充電杭のデータセットによる評価結果から,提案手法はPAGと呼ばれ,最先端の予測性能を達成可能であることが示された。
- 参考スコア(独自算出の注目度): 7.441576351434805
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Along with the proliferation of electric vehicles (EVs), optimizing the use
of EV charging space can significantly alleviate the growing load on
intelligent transportation systems. As the foundation to achieve such an
optimization, a spatiotemporal method for EV charging demand prediction in
urban areas is required. Although several solutions have been proposed by using
data-driven deep learning methods, it can be found that these
performance-oriented methods may suffer from misinterpretations to correctly
handle the reverse relationship between charging demands and prices. To tackle
the emerging challenges of training an accurate and interpretable prediction
model, this paper proposes a novel approach that enables the integration of
graph and temporal attention mechanisms for feature extraction and the usage of
physic-informed meta-learning in the model pre-training step for knowledge
transfer. Evaluation results on a dataset of 18,013 EV charging piles in
Shenzhen, China, show that the proposed approach, named PAG, can achieve
state-of-the-art forecasting performance and the ability in understanding the
adaptive changes in charging demands caused by price fluctuations.
- Abstract(参考訳): 電気自動車(EV)の普及に伴い、EV充電スペースの使用を最適化することで、インテリジェントな輸送システムへの負荷の増大を大幅に軽減することができる。
このような最適化を実現する基盤として,都市部におけるEV充電需要予測のための時空間的手法が必要である。
データ駆動型ディープラーニング手法によっていくつかの解決策が提案されているが、これらのパフォーマンス指向手法は、課金要求と価格の逆関係を正しく扱うために誤解に苦しむ可能性がある。
本稿では,特徴抽出のためのグラフと時間的注意機構の統合と,知識伝達のためのモデル事前学習ステップにおける物理インフォームドメタラーニングの利用を可能にする新しいアプローチを提案する。
中国深センの18,013台のEV充電杭のデータセットによる評価結果から,PAGと呼ばれる提案手法は,現状の予測性能と価格変動による充電需要の適応的変化を理解することができることを示した。
関連論文リスト
- Coherent Hierarchical Probabilistic Forecasting of Electric Vehicle Charging Demand [3.7690784039257292]
本稿では,複数の電気自動車充電ステーション(EVCS)の階層的確率的予測問題について検討する。
各充電ステーションに対して、部分入力凸ニューラルネットワーク(PICNN)に基づくディープラーニングモデルを訓練し、日頭充電需要の条件分布を予測する。
微分凸最適化層(DCL)は、分布からサンプリングされたシナリオを再構成し、一貫性のあるシナリオを生成する。
論文 参考訳(メタデータ) (2024-11-01T03:35:04Z) - Attention-based Citywide Electric Vehicle Charging Demand Prediction Approach Considering Urban Region and Dynamic Influences [5.687001127686438]
電気自動車の充電需要予測のための注意に基づく異種データ融合手法(ADF)を提案する。
非ペアワイズ関係を学習するために、サービス領域を、その領域における関心点の種類と数によってクラスタ化する。
都市の異なる地域での予測結果に及ぼす動的影響の影響とクラスタリング手法の有効性を実証する。
論文 参考訳(メタデータ) (2024-10-24T14:19:38Z) - Annealed Winner-Takes-All for Motion Forecasting [48.200282332176094]
本稿では,AWTAの損失を最先端のモーション予測モデルと統合して性能を向上させる方法を示す。
我々の手法は、WTAを用いて訓練された任意の軌道予測モデルに容易に組み込むことができる。
論文 参考訳(メタデータ) (2024-09-17T13:26:17Z) - Optimization Hyper-parameter Laws for Large Language Models [56.322914260197734]
ハイパーパラメータとトレーニング結果の関係をキャプチャするフレームワークであるOps-Lawsを提案する。
さまざまなモデルサイズとデータスケールにわたる検証は、Opt-Lawsのトレーニング損失を正確に予測する能力を示しています。
このアプローチは、全体的なモデル性能を高めながら、計算コストを大幅に削減する。
論文 参考訳(メタデータ) (2024-09-07T09:37:19Z) - Physics-guided Active Sample Reweighting for Urban Flow Prediction [75.24539704456791]
都市フロー予測は、バス、タクシー、ライド駆動モデルといった交通サービスのスループットを見積もる、微妙な時間的モデリングである。
最近の予測解は、物理学誘導機械学習(PGML)の概念による改善をもたらす。
我々は、PN(atized Physics-guided Network)を開発し、P-GASR(Physical-guided Active Sample Reweighting)を提案する。
論文 参考訳(メタデータ) (2024-07-18T15:44:23Z) - Learning and Optimization for Price-based Demand Response of Electric Vehicle Charging [0.9124662097191375]
PBDRモデリングのための新しい意思決定型エンドツーエンドフレームワークを提案する。
EV客のPBDRパターンを用いた充電ステーション運転シミュレーションにおける本手法の有効性を評価する。
論文 参考訳(メタデータ) (2024-04-16T06:39:30Z) - Divide-Conquer Transformer Learning for Predicting Electric Vehicle Charging Events Using Smart Meter Data [4.820576346277399]
過去のスマートメーターデータを用いた家庭用充電予測手法を開発した。
我々は様々な予測時間で96.81%以上の精度を一貫して達成している。
論文 参考訳(メタデータ) (2024-03-20T02:17:16Z) - Pre-training on Synthetic Driving Data for Trajectory Prediction [61.520225216107306]
軌道予測におけるデータ不足の問題を緩和するパイプラインレベルのソリューションを提案する。
我々は、駆動データを生成するためにHDマップ拡張とトラジェクトリ合成を採用し、それらを事前学習することで表現を学習する。
我々は、データ拡張と事前学習戦略の有効性を実証するための広範な実験を行う。
論文 参考訳(メタデータ) (2023-09-18T19:49:22Z) - An Energy Consumption Model for Electrical Vehicle Networks via Extended
Federated-learning [50.85048976506701]
本稿では,フェデレートラーニングモデルに基づく不安度を測る新しい手法を提案する。
バッテリー消費を推定し、車両ネットワークにエネルギー効率の高いルートプランニングを提供する。
論文 参考訳(メタデータ) (2021-11-13T15:03:44Z) - Analyzing the Travel and Charging Behavior of Electric Vehicles -- A
Data-driven Approach [1.7403133838762446]
電気自動車(EV)は電力システムにかなりの電力需要をもたらす可能性がある。
本プロジェクトでは,全国住宅ホルドサーベイ(NHTS)データを用いて旅行の順序を定めている。
我々は、旅行開始時間、終了時間、距離など、ドライバーの次の旅行のパラメータを予測する機械学習モデルを開発する。
論文 参考訳(メタデータ) (2021-06-11T15:53:59Z) - Hybrid Physics and Deep Learning Model for Interpretable Vehicle State
Prediction [75.1213178617367]
深層学習と物理運動モデルを組み合わせたハイブリッドアプローチを提案する。
ハイブリッドモデルの一部として,ディープニューラルネットワークの出力範囲を制限することで,解釈可能性を実現する。
その結果, ハイブリッドモデルでは, 既存のディープラーニング手法に比べて精度を低下させることなく, モデル解釈性が向上できることがわかった。
論文 参考訳(メタデータ) (2021-03-11T15:21:08Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。