論文の概要: A Generative Model Enhanced Multi-Agent Reinforcement Learning Method for Electric Vehicle Charging Navigation
- arxiv url: http://arxiv.org/abs/2502.20068v1
- Date: Thu, 27 Feb 2025 13:24:51 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-02-28 14:56:33.834531
- Title: A Generative Model Enhanced Multi-Agent Reinforcement Learning Method for Electric Vehicle Charging Navigation
- Title(参考訳): 電気自動車充電ナビゲーションのための多エージェント強化学習法の生成モデル
- Authors: Tianyang Qi, Shibo Chen, Jun Zhang,
- Abstract要約: 本稿では,EVのローカル情報のみを利用する新しい生成モデル拡張型マルチエージェントDRLアルゴリズムを提案する。
実験の結果,提案アルゴリズムは局所的な情報に依存し,既存の局所的な情報に基づく手法よりも優れていることがわかった。
- 参考スコア(独自算出の注目度): 6.326967507936191
- License:
- Abstract: With the widespread adoption of electric vehicles (EVs), navigating for EV drivers to select a cost-effective charging station has become an important yet challenging issue due to dynamic traffic conditions, fluctuating electricity prices, and potential competition from other EVs. The state-of-the-art deep reinforcement learning (DRL) algorithms for solving this task still require global information about all EVs at the execution stage, which not only increases communication costs but also raises privacy issues among EV drivers. To overcome these drawbacks, we introduce a novel generative model-enhanced multi-agent DRL algorithm that utilizes only the EV's local information while achieving performance comparable to these state-of-the-art algorithms. Specifically, the policy network is implemented on the EV side, and a Conditional Variational Autoencoder-Long Short Term Memory (CVAE-LSTM)-based recommendation model is developed to provide recommendation information. Furthermore, a novel future charging competition encoder is designed to effectively compress global information, enhancing training performance. The multi-gradient descent algorithm (MGDA) is also utilized to adaptively balance the weight between the two parts of the training objective, resulting in a more stable training process. Simulations are conducted based on a practical area in Xi\'an, China. Experimental results show that our proposed algorithm, which relies on local information, outperforms existing local information-based methods and achieves less than 8\% performance loss compared to global information-based methods.
- Abstract(参考訳): 電気自動車(EV)の普及により、電気自動車ドライバーがコスト効率のよい充電ステーションを選択することは、動的な交通条件、電力価格の変動、他のEVとの競合の可能性など、重要な課題となっている。
このタスクを解決するための最先端の深層強化学習(DRL)アルゴリズムは、実行段階ですべてのEVに関するグローバルな情報を必要とする。
これらの欠点を克服するために,我々は,EVのローカル情報のみを利用して,最先端のアルゴリズムに匹敵する性能を実現した,新しい生成モデル付きマルチエージェントDRLアルゴリズムを提案する。
具体的には、EV側でポリシーネットワークを実装し、CVAE-LSTMに基づくレコメンデーションモデルを構築してレコメンデーション情報を提供する。
さらに、グローバル情報を効果的に圧縮し、トレーニング性能を向上させるために、将来的な充電コンペティションエンコーダを設計する。
多段階降下アルゴリズム(MGDA)は、トレーニング対象の2つの部分間の重みを適応的にバランスさせ、より安定したトレーニングプロセスをもたらす。
シミュレーションは、中国のXi\anの実践的なエリアに基づいて行われる。
実験結果から,提案アルゴリズムはローカル情報に依存し,既存のローカル情報ベース手法よりも優れ,グローバル情報ベース手法に比べて8倍未満の性能低下を達成できることがわかった。
関連論文リスト
- Optimizing Electric Vehicles Charging using Large Language Models and Graph Neural Networks [0.0]
従来の最適化手法と強化学習アプローチは、しばしばリアルタイムEV充電の高次元性と動的性質に苦しむ。
本研究では,Large Language Models (LLMs) とGraph Neural Networks (GNNs) を組み合わせることで,従来のEVスマート充電法より優れていることを示す。
論文 参考訳(メタデータ) (2025-02-05T11:00:51Z) - Task Delay and Energy Consumption Minimization for Low-altitude MEC via Evolutionary Multi-objective Deep Reinforcement Learning [52.64813150003228]
無人航空機や他の航空機による低高度経済(LAE)は、輸送、農業、環境監視といった分野に革命をもたらした。
今後の6世代(6G)時代において、UAV支援移動エッジコンピューティング(MEC)は特に山岳や災害に遭った地域のような困難な環境において重要である。
タスクオフロード問題は、主にタスク遅延の最小化とUAVのエネルギー消費のトレードオフに対処するUAV支援MECの重要な問題の一つである。
論文 参考訳(メタデータ) (2025-01-11T02:32:42Z) - Learning for Cross-Layer Resource Allocation in MEC-Aided Cell-Free Networks [71.30914500714262]
移動エッジコンピューティング(MEC)を援用したセルフリーネットワーク上でのクロスレイヤリソース割り当ては、データレートを促進するために、送信およびコンピューティングリソースを十分に活用することができる。
深層学習の観点からMEC支援セルフリーネットワークのサブキャリア配置とビームフォーミング最適化について検討した。
論文 参考訳(メタデータ) (2024-12-21T10:18:55Z) - Safety-Aware Reinforcement Learning for Electric Vehicle Charging Station Management in Distribution Network [4.842172685255376]
電気自動車(EV)は、調整がない状態での配電系統の運用に重大なリスクをもたらす。
本稿では、EV充電ステーションの管理を目的とした安全対応強化学習(RL)アルゴリズムを提案する。
提案アルゴリズムは制約違反に対する明示的な罰則に依存しないため,ペナルティチューニング係数は不要である。
論文 参考訳(メタデータ) (2024-03-20T01:57:38Z) - Hybrid Reinforcement Learning for Optimizing Pump Sustainability in
Real-World Water Distribution Networks [55.591662978280894]
本稿では,実世界の配水ネットワーク(WDN)のリアルタイム制御を強化するために,ポンプスケジューリング最適化問題に対処する。
我々の主な目的は、エネルギー消費と運用コストを削減しつつ、物理的な運用上の制約を遵守することである。
進化に基づくアルゴリズムや遺伝的アルゴリズムのような伝統的な最適化手法は、収束保証の欠如によってしばしば不足する。
論文 参考訳(メタデータ) (2023-10-13T21:26:16Z) - Adaptive Resource Allocation for Virtualized Base Stations in O-RAN with Online Learning [55.08287089554127]
基地局(vBS)を備えたオープンラジオアクセスネットワークシステムは、柔軟性の向上、コスト削減、ベンダーの多様性、相互運用性のメリットを提供する。
本研究では,予期せぬ「混み合う」環境下であっても,効率的なスループットとvBSエネルギー消費のバランスをとるオンライン学習アルゴリズムを提案する。
提案手法は, 課題のある環境においても, 平均最適性ギャップをゼロにすることで, サブ線形後悔を実現する。
論文 参考訳(メタデータ) (2023-09-04T17:30:21Z) - DClEVerNet: Deep Combinatorial Learning for Efficient EV Charging
Scheduling in Large-scale Networked Facilities [5.78463306498655]
電気自動車(EV)は配電ネットワークを著しくストレスし、性能を劣化させ、安定性を損なう可能性がある。
現代の電力網は、EV充電スケジューリングをスケーラブルで効率的な方法で最適化できる、コーディネートまたはスマートな充電戦略を必要とする。
ネットワークの利用可能な電力容量とステーションの占有限度を考慮しつつ、EV利用者の総福祉利益を最大化する時間結合二元最適化問題を定式化する。
論文 参考訳(メタデータ) (2023-05-18T14:03:47Z) - A new Hyper-heuristic based on Adaptive Simulated Annealing and
Reinforcement Learning for the Capacitated Electric Vehicle Routing Problem [9.655068751758952]
都市部では環境汚染と地球温暖化を減らすために電気自動車(EV)が採用されている。
社会と経済の持続可能性に影響を与え続けているラストマイルロジスティクスの軌道をルーティングするのにはまだ不足がある。
本稿では,高ヒューリスティック適応アニーリングと強化学習というハイパーヒューリスティックなアプローチを提案する。
論文 参考訳(メタデータ) (2022-06-07T11:10:38Z) - An Energy Consumption Model for Electrical Vehicle Networks via Extended
Federated-learning [50.85048976506701]
本稿では,フェデレートラーニングモデルに基づく不安度を測る新しい手法を提案する。
バッテリー消費を推定し、車両ネットワークにエネルギー効率の高いルートプランニングを提供する。
論文 参考訳(メタデータ) (2021-11-13T15:03:44Z) - Safe Model-based Off-policy Reinforcement Learning for Eco-Driving in
Connected and Automated Hybrid Electric Vehicles [3.5259944260228977]
本研究は,エコドライブ問題に対するセーフオフポジーモデルに基づく強化学習アルゴリズムを提案する。
提案アルゴリズムは, モデルフリーエージェントと比較して, 平均速度が高く, 燃費も良好である。
論文 参考訳(メタデータ) (2021-05-25T03:41:29Z) - Reinforcement Learning Based Vehicle-cell Association Algorithm for
Highly Mobile Millimeter Wave Communication [53.47785498477648]
本稿では,ミリ波通信網における車とセルの関連性について検討する。
まず、ユーザ状態(VU)問題を離散的な非車両関連最適化問題として定式化する。
提案手法は,複数のベースライン設計と比較して,ユーザの複雑性とVUEの20%削減の合計で最大15%のゲインが得られる。
論文 参考訳(メタデータ) (2020-01-22T08:51:05Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。