論文の概要: Implications of Edge Computing for Static Site Generation
- arxiv url: http://arxiv.org/abs/2309.05669v1
- Date: Fri, 8 Sep 2023 07:49:23 GMT
- ステータス: 処理完了
- システム内更新日: 2023-10-23 08:00:57.829188
- Title: Implications of Edge Computing for Static Site Generation
- Title(参考訳): 静的サイト生成におけるエッジコンピューティングの意義
- Authors: Juho Veps\"al\"ainen and Arto Hellas and Petri Vuorimaa
- Abstract要約: エッジコンピューティングは、静的な背景の上に動的サイトを作成することで、SSGの有用性をさらに拡張するための新しい選択肢である。
本稿では,エッジコンピューティング分野における最近の発展の影響について考察し,SSGへの影響について考察する。
- 参考スコア(独自算出の注目度): 2.671856791295011
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Static site generation (SSG) is a common technique in the web development
space to create performant websites that are easy to host. Numerous SSG tools
exist, and the approach has been complemented by newer approaches, such as
Jamstack, that extend its usability. Edge computing represents a new option to
extend the usefulness of SSG further by allowing the creation of dynamic sites
on top of a static backdrop, providing dynamic resources close to the user. In
this paper, we explore the impact of the recent developments in the edge
computing space and consider its implications for SSG.
- Abstract(参考訳): 静的サイト生成(SSG)は、ホストが容易なパフォーマンスの高いWebサイトを作成するための一般的な技術である。
多くのSSGツールが存在し、アプローチはJamstackのような新しいアプローチによって補完され、ユーザビリティが拡張された。
エッジコンピューティングは、静的な背景の上に動的サイトを作成し、ユーザに近い動的リソースを提供することで、ssgの有用性をさらに拡張する新しいオプションである。
本稿では,エッジコンピューティング分野における最近の発展の影響について考察し,SSGへの影響について考察する。
関連論文リスト
- Enhancing Video-Language Representations with Structural Spatio-Temporal Alignment [130.15775113897553]
フィンスタは微細な構造的時間的アライメント学習法である。
既存の13の強化されたビデオ言語モデルも一貫して改善されている。
論文 参考訳(メタデータ) (2024-06-27T15:23:36Z) - Exploring User Retrieval Integration towards Large Language Models for Cross-Domain Sequential Recommendation [66.72195610471624]
Cross-Domain Sequential Recommendationは、異なるドメイン間でユーザのシーケンシャルな好みをマイニングし、転送することを目的としている。
本稿では,ユーザ検索手法を探索し,CDSRの性能向上を目的とした URLLM という新しいフレームワークを提案する。
論文 参考訳(メタデータ) (2024-06-05T09:19:54Z) - Distributed Threat Intelligence at the Edge Devices: A Large Language Model-Driven Approach [0.0]
エッジデバイス上の分散脅威インテリジェンスは、リソース制約されたエッジデバイス上でのサイバーセキュリティを強化するための有望なパラダイムである。
このアプローチでは、エッジデバイスに直接軽量機械学習モデルをデプロイして、ネットワークトラフィックやシステムログなどのローカルデータストリームをリアルタイムで分析する。
提案するフレームワークは,ネットワークからエッジデバイスを分離することで,サイバー脅威の検出と緩和において,より優れたセキュリティを提供することにより,エッジコンピューティングのセキュリティを向上させることができる。
論文 参考訳(メタデータ) (2024-05-14T16:40:37Z) - AutoScraper: A Progressive Understanding Web Agent for Web Scraper Generation [54.17246674188208]
Webスクレイピングは、Webサイトからデータを抽出し、自動データ収集を可能にし、データ分析機能を強化し、手動のデータ入力作業を最小化する強力なテクニックである。
既存の手法では、ラッパーベースの手法は、新しいウェブサイトで直面する場合、適応性とスケーラビリティの制限に悩まされる。
本稿では,大規模言語モデル(LLM)を用いたWebスクレイパー生成のパラダイムを紹介し,多様なWeb環境をより効率的に処理できる2段階フレームワークであるAutoScraperを提案する。
論文 参考訳(メタデータ) (2024-04-19T09:59:44Z) - Detecting Unknown Attacks in IoT Environments: An Open Set Classifier
for Enhanced Network Intrusion Detection [5.787704156827843]
本稿では,IoT環境に適したネットワーク侵入検知システム(NIDS)の領域におけるオープンセット認識(OSR)問題の緩和を目的としたフレームワークを提案する。
ネットワークトラフィックから空間的・時間的パターンを抽出し,パケットレベルデータのイメージベース表現に重きを置いている。
実験の結果は、このフレームワークの有効性を顕著に強調し、これまで見つからなかった攻撃に対して、驚くべき88%の検知率を誇示している。
論文 参考訳(メタデータ) (2023-09-14T06:41:45Z) - SSMG: Spatial-Semantic Map Guided Diffusion Model for Free-form
Layout-to-Image Generation [68.42476385214785]
本稿では,レイアウトから派生した特徴写像を用いた空間意味マップガイド(SSMG)拡散モデルを提案する。
SSMGは,従来の研究に比べて空間的,意味的な制御性に優れた生成品質を実現する。
また,RSA(Relation-Sensitive Attention)機構とLSA(Location-Sensitive Attention)機構を提案する。
論文 参考訳(メタデータ) (2023-08-20T04:09:12Z) - A Unified Framework for Integrating Semantic Communication and
AI-Generated Content in Metaverse [57.317580645602895]
統合セマンティックコミュニケーションとAI生成コンテンツ(ISGC)は近年多くの注目を集めている。
ISGCはユーザ入力から意味情報を転送し、デジタルコンテンツを生成し、Metaverse用のグラフィックをレンダリングする。
最適化されたリソース割り当てのための統合ゲインを含む,ISGCの2つの主要なメリットをキャプチャする統合フレームワークを導入する。
論文 参考訳(メタデータ) (2023-05-18T02:02:36Z) - Unified, User and Task (UUT) Centered Artificial Intelligence for
Metaverse Edge Computing [8.513938423514636]
Metaverseは、コンテンツ制作、ソーシャルエンターテイメント、世界の価値移転、インテリジェントトラフィック、ヘルスケアなど、多くのエコシステムサービスを提供している。
既存のMetaverseエッジコンピューティングアプローチは、リソース割り当てを効率的かつ効果的に処理しない。
本稿では,AI(AI)ベースのモバイルエッジコンピューティング(MEC)パラダイムを新たに導入し,Metaverse互換の統一ユーザタスク(UUT)を提案する。
論文 参考訳(メタデータ) (2022-12-19T08:29:38Z) - Learning towards Synchronous Network Memorizability and Generalizability
for Continual Segmentation across Multiple Sites [52.84959869494459]
臨床実践では、複数のサイトから連続的なデータストリームを継続的に学習するために、セグメンテーションネットワークが必要であることが多い。
既存の方法は、通常、以前のサイトのネットワーク記憶可能性や、目に見えないサイトの一般化可能性に制限される。
本稿では,SMG学習フレームワークの提案により,同期記憶可能性と一般化可能性の問題に取り組むことを目的とする。
論文 参考訳(メタデータ) (2022-06-14T13:04:36Z) - Instance Weighted Incremental Evolution Strategies for Reinforcement
Learning in Dynamic Environments [11.076005074172516]
本研究では,動的環境における進化戦略(ES)の体系的漸進学習手法を提案する。
目標は、環境が変わるたびに、学習済みのポリシーを新しいポリシーに漸進的に調整することだ。
本稿では、動的環境への高速な学習適応を実現するため、RLドメインのためのスケーラブルなESアルゴリズムのファミリーを紹介する。
論文 参考訳(メタデータ) (2020-10-09T14:31:44Z) - Applying Machine Learning Techniques for Caching in Edge Networks: A
Comprehensive Survey [3.985352415162327]
機械学習技術は、ユーザの好みに基づいてコンテンツの人気を予測するために応用できる。
これらの機械学習の応用は、エッジネットワークの関連コンテンツを特定するのに役立つ。
本稿では,エッジネットワークにおけるネットワーク内キャッシュに対する機械学習手法の適用について検討する。
論文 参考訳(メタデータ) (2020-06-21T09:31:56Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。