論文の概要: Systematic Evaluation of Geolocation Privacy Mechanisms
- arxiv url: http://arxiv.org/abs/2309.06263v1
- Date: Tue, 12 Sep 2023 14:23:19 GMT
- ステータス: 処理完了
- システム内更新日: 2024-03-19 06:43:22.345603
- Title: Systematic Evaluation of Geolocation Privacy Mechanisms
- Title(参考訳): 位置情報のプライバシメカニズムの体系的評価
- Authors: Alban Héon, Ryan Sheatsley, Quinn Burke, Blaine Hoak, Eric Pauley, Yohan Beugin, Patrick McDaniel,
- Abstract要約: 位置情報プライバシ保護メカニズム(LPPM)は、共有データのプライバシを確保するために、以前の研究によって提案されている。
LPPMの感度について, 使用シナリオについて検討した。
- 参考スコア(独自算出の注目度): 6.356211727228669
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Location data privacy has become a serious concern for users as Location Based Services (LBSs) have become an important part of their life. It is possible for malicious parties having access to geolocation data to learn sensitive information about the user such as religion or political views. Location Privacy Preserving Mechanisms (LPPMs) have been proposed by previous works to ensure the privacy of the shared data while allowing the users to use LBSs. But there is no clear view of which mechanism to use according to the scenario in which the user makes use of a LBS. The scenario is the way the user is using a LBS (frequency of reports, number of reports). In this paper, we study the sensitivity of LPPMs on the scenario on which they are used. We propose a framework to systematically evaluate LPPMs by considering an exhaustive combination of LPPMs, attacks and metrics. Using our framework we compare a selection of LPPMs including an improved mechanism that we introduce. By evaluating over a variety of scenarios, we find that the efficacy (privacy, utility, and robustness) of the studied mechanisms is dependent on the scenario: for example the privacy of Planar Laplace geo-indistinguishability is greatly reduced in a continuous scenario. We show that the scenario is essential to consider when choosing an obfuscation mechanism for a given application.
- Abstract(参考訳): 位置情報データプライバシは、位置情報ベースサービス(LBS)が生活の重要な部分となっているため、ユーザにとって深刻な関心事となっている。
悪意ある当事者が位置情報データにアクセスして、宗教や政治的見解などのユーザに関する機密情報を学習することは可能である。
位置情報プライバシ保護メカニズム(LPPM)は、ユーザがLBSを使用できるようにしながら、共有データのプライバシを確保するために、以前の作業によって提案されている。
しかし、ユーザがLBSを使用するシナリオに応じて、どのメカニズムを使うべきかを明確には見当たらない。
シナリオは、ユーザがLBS(レポートの頻度、レポートの数)を使用する方法です。
本稿では,LPPMが使用するシナリオに対する感度について検討する。
本稿では,LPPM,アタック,メトリクスの徹底的な組み合わせを考慮し,LPPMを体系的に評価する枠組みを提案する。
本フレームワークを用いて,導入したLPPMを改良した機構を含む選択したLPPMと比較する。
様々なシナリオを評価することで、研究されたメカニズムの有効性(プライバシ、ユーティリティ、ロバスト性)がシナリオに依存していることが分かる。
このシナリオは、特定のアプリケーションに対して難読化メカニズムを選択する際には不可欠であることを示す。
関連論文リスト
- Private Counterfactual Retrieval [34.11302393278422]
透明性と説明可能性は、ブラックボックス機械学習モデルを採用する際に考慮すべき極めて重要な2つの側面である。
反実的な説明を提供することは、この要件を満たす一つの方法である。
プライベート情報検索(PIR)技術にインスパイアされた複数のスキームを提案する。
論文 参考訳(メタデータ) (2024-10-17T17:45:07Z) - Mind the Privacy Unit! User-Level Differential Privacy for Language Model Fine-Tuning [62.224804688233]
差分プライバシ(DP)は、モデルが特定のプライバシユニットで「ほとんど区別できない」ことを保証することで、有望なソリューションを提供する。
ユーザ間でのプライバシー保護の確保に必要なアプリケーションによって動機づけられたユーザレベルのDPについて検討する。
論文 参考訳(メタデータ) (2024-06-20T13:54:32Z) - A Framework for Managing Multifaceted Privacy Leakage While Optimizing Utility in Continuous LBS Interactions [0.0]
我々は,LBSにおけるプライバシー漏洩の理解と管理の促進を目的とした,新しいコントリビューションをいくつか提示する。
私たちのコントリビューションは、位置情報ベースのインタラクションのさまざまな側面にわたるプライバシー上の懸念を分析するための、より包括的なフレームワークを提供します。
論文 参考訳(メタデータ) (2024-04-20T15:20:01Z) - Privacy Amplification for the Gaussian Mechanism via Bounded Support [64.86780616066575]
インスタンスごとの差分プライバシー(pDP)やフィッシャー情報損失(FIL)といったデータ依存のプライバシ会計フレームワークは、固定されたトレーニングデータセット内の個人に対してきめ細かいプライバシー保証を提供する。
本稿では,データ依存会計下でのプライバシ保証を向上することを示すとともに,バウンドサポートによるガウス機構の簡単な修正を提案する。
論文 参考訳(メタデータ) (2024-03-07T21:22:07Z) - Unified Mechanism-Specific Amplification by Subsampling and Group Privacy Amplification [54.1447806347273]
サブサンプリングによる増幅は、差分プライバシーを持つ機械学習の主要なプリミティブの1つである。
本稿では、メカニズム固有の保証を導出するための最初の一般的なフレームワークを提案する。
サブサンプリングが複数のユーザのプライバシに与える影響を分析する。
論文 参考訳(メタデータ) (2024-03-07T19:36:05Z) - A Learning-based Declarative Privacy-Preserving Framework for Federated Data Management [23.847568516724937]
本稿では,DP-SGDアルゴリズムを用いて学習したディープラーニングモデルを用いた新たなプライバシ保存手法を提案する。
次に、ユーザが"保護する方法"ではなく、"保護すべきプライベート情報"を指定可能な、宣言的なプライバシ保護ワークフローを新たにデモします。
論文 参考訳(メタデータ) (2024-01-22T22:50:59Z) - Protecting Personalized Trajectory with Differential Privacy under Temporal Correlations [37.88484505367802]
本稿では,パーソナライズされたトラジェクトリプライバシ保護機構(PTPPM)を提案する。
ヒルベルト曲線に基づく最小距離探索アルゴリズムを用いて,各位置の保護位置集合(PLS)を同定する。
我々は位置摂動のための新しいPermute-and-Flip機構を提案し、データ公開プライバシー保護における初期応用を位置摂動機構にマッピングした。
論文 参考訳(メタデータ) (2024-01-20T12:59:08Z) - Breaking the Communication-Privacy-Accuracy Tradeoff with
$f$-Differential Privacy [51.11280118806893]
サーバが複数のユーザの協調的なデータ分析を,プライバシの懸念と限られた通信能力で調整する,フェデレートされたデータ分析問題を考える。
有限出力空間を有する離散値機構の局所的差分プライバシー保証を$f$-differential privacy (DP) レンズを用いて検討する。
より具体的には、様々な離散的評価機構の厳密な$f$-DP保証を導出することにより、既存の文献を前進させる。
論文 参考訳(メタデータ) (2023-02-19T16:58:53Z) - Optimal and Differentially Private Data Acquisition: Central and Local
Mechanisms [9.599356978682108]
プライバシに敏感なユーザからデータを収集するプラットフォームの問題を考え,その基盤となる関心パラメータを推定する。
ユーザに対して、プライバシ保証を提供するための2つの一般的な差分プライバシ設定について検討する。
このメカニズム設計問題は,ユーザのプライバシ感を真に報告するための推定器と支払器の最適選択として機能する。
論文 参考訳(メタデータ) (2022-01-10T00:27:43Z) - Graph-Homomorphic Perturbations for Private Decentralized Learning [64.26238893241322]
ローカルな見積もりの交換は、プライベートデータに基づくデータの推測を可能にする。
すべてのエージェントで独立して選択された摂動により、パフォーマンスが著しく低下する。
本稿では,特定のヌル空間条件に従って摂動を構成する代替スキームを提案する。
論文 参考訳(メタデータ) (2020-10-23T10:35:35Z) - PGLP: Customizable and Rigorous Location Privacy through Policy Graph [68.3736286350014]
我々はPGLPと呼ばれる新しい位置プライバシーの概念を提案し、カスタマイズ可能で厳格なプライバシー保証を備えたプライベートロケーションをリリースするためのリッチなインターフェースを提供する。
具体的には,ユーザの位置プライバシー要件を,表現的かつカスタマイズ可能なテキスト配置ポリシーグラフを用いて形式化する。
第3に、位置露光の検出、ポリシーグラフの修復、およびカスタマイズ可能な厳格な位置プライバシーを備えたプライベートな軌跡リリースをパイプライン化する、プライベートな位置トレースリリースフレームワークを設計する。
論文 参考訳(メタデータ) (2020-05-04T04:25:59Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。