Quantum memories for squeezed and coherent superpositions in a driven-dissipative nonlinear oscillator
- URL: http://arxiv.org/abs/2309.06300v2
- Date: Fri, 26 Jul 2024 09:14:32 GMT
- Title: Quantum memories for squeezed and coherent superpositions in a driven-dissipative nonlinear oscillator
- Authors: AdriĆ Labay-Mora, Roberta Zambrini, Gian Luca Giorgi,
- Abstract summary: Superconducting circuits have been employed to realize long-lived qubits stored in coherent states.
We show that coherent superpositions of squeezed states are achievable in the presence of a strong symmetry.
We investigate the potential application of these nonlinear driven-dissipative resonators for quantum computing and quantum associative memory.
- Score: 0.9217021281095907
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Quantum oscillators with nonlinear driving and dissipative terms have gained significant attention due to their ability to stabilize cat-states for universal quantum computation. Recently, superconducting circuits have been employed to realize such long-lived qubits stored in coherent states. We present a generalization of these oscillators, which are not limited to coherent states, in the presence of different nonlinearities in driving and dissipation, exploring different degrees. Specifically, we present an extensive analysis of the asymptotic dynamical features and of the storage of squeezed states. We demonstrate that coherent superpositions of squeezed states are achievable in the presence of a strong symmetry, thereby allowing for the storage of squeezed cat-states. In the weak symmetry regime, accounting for linear dissipation, we investigate the potential application of these nonlinear driven-dissipative resonators for quantum computing and quantum associative memory and analyze the impact of squeezing on their performance.
Related papers
- Tachyonic and parametric instabilities in an extended bosonic Josephson Junction [0.0]
We study the dynamics and decay of quantum phase coherence for Bose-Einstein condensates in tunnel-coupled quantum wires.
We investigate the phenomenon of self-trapping in the relative population imbalance of the two condensates.
We discuss realistic parameters for experimental realizations of the $pi$-mode in ultracold atom setups.
arXiv Detail & Related papers (2024-10-14T14:22:49Z) - Generating arbitrary superpositions of nonclassical quantum harmonic oscillator states [0.0]
We create arbitrary superpositions of nonclassical and non-Gaussian states of a quantum harmonic oscillator using the motion of a trapped ion coupled to its internal spin states.
We observe the nonclassical nature of these states in the form of Wigner negativity following a full state reconstruction.
arXiv Detail & Related papers (2024-09-05T12:45:57Z) - Attractive-repulsive interaction in coupled quantum oscillators [14.37149160708975]
We find an interesting symmetry-breaking transition from quantum limit cycle oscillation to quantum inhomogeneous steady state.
This transition is contrary to the previously known symmetry-breaking transition from quantum homogeneous to inhomogeneous steady state.
Remarkably, we find the generation of entanglement associated with the symmetry-breaking transition that has no analogue in the classical domain.
arXiv Detail & Related papers (2024-08-23T10:45:19Z) - Megastable quantization in self-excited systems [0.0]
A classical particle in a confining potential gives rise to a Hamiltonian conservative dynamical system.
The corresponding quantum particle exhibits countably infinite discrete energy levels.
Our formalism can be extended to self-excited particles in general confining potentials.
arXiv Detail & Related papers (2024-06-06T09:40:57Z) - Hysteresis and Self-Oscillations in an Artificial Memristive Quantum Neuron [79.16635054977068]
We study an artificial neuron circuit containing a quantum memristor in the presence of relaxation and dephasing.
We demonstrate that this physical principle enables hysteretic behavior of the current-voltage characteristics of the quantum device.
arXiv Detail & Related papers (2024-05-01T16:47:23Z) - Critical quantum geometric tensors of parametrically-driven nonlinear
resonators [5.743814444071535]
Parametrically driven nonlinear resonators represent building block for realizing fault-tolerant quantum computation.
Critical phenomena can occur without interaction with any other quantum system.
This work reveals that the quantum metric and Berry curvature display diverging behaviors across the quantum phase transition.
arXiv Detail & Related papers (2023-12-22T03:31:58Z) - Reminiscence of classical chaos in driven transmons [117.851325578242]
We show that even off-resonant drives can cause strong modifications to the structure of the transmon spectrum rendering a large part of it chaotic.
Results lead to a photon number threshold characterizing the appearance of chaos-induced quantum demolition effects.
arXiv Detail & Related papers (2022-07-19T16:04:46Z) - Decimation technique for open quantum systems: a case study with
driven-dissipative bosonic chains [62.997667081978825]
Unavoidable coupling of quantum systems to external degrees of freedom leads to dissipative (non-unitary) dynamics.
We introduce a method to deal with these systems based on the calculation of (dissipative) lattice Green's function.
We illustrate the power of this method with several examples of driven-dissipative bosonic chains of increasing complexity.
arXiv Detail & Related papers (2022-02-15T19:00:09Z) - Effect of Emitters on Quantum State Transfer in Coupled Cavity Arrays [48.06402199083057]
We study the effects of atoms in cavities which can absorb and emit photons as they propagate down the array.
Our model is equivalent to previously examined spin chains in the one-excitation sector and in the absence of emitters.
arXiv Detail & Related papers (2021-12-10T18:52:07Z) - Designing Kerr Interactions for Quantum Information Processing via
Counterrotating Terms of Asymmetric Josephson-Junction Loops [68.8204255655161]
static cavity nonlinearities typically limit the performance of bosonic quantum error-correcting codes.
Treating the nonlinearity as a perturbation, we derive effective Hamiltonians using the Schrieffer-Wolff transformation.
Results show that a cubic interaction allows to increase the effective rates of both linear and nonlinear operations.
arXiv Detail & Related papers (2021-07-14T15:11:05Z) - Quantum Zeno effect appears in stages [64.41511459132334]
In the quantum Zeno effect, quantum measurements can block the coherent oscillation of a two level system by freezing its state to one of the measurement eigenstates.
We show that the onset of the Zeno regime is marked by a $textitcascade of transitions$ in the system dynamics as the measurement strength is increased.
arXiv Detail & Related papers (2020-03-23T18:17:36Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.