論文の概要: MCNS: Mining Causal Natural Structures Inside Time Series via A Novel
Internal Causality Scheme
- arxiv url: http://arxiv.org/abs/2309.06739v1
- Date: Wed, 13 Sep 2023 06:15:37 GMT
- ステータス: 処理完了
- システム内更新日: 2023-09-14 15:22:35.886223
- Title: MCNS: Mining Causal Natural Structures Inside Time Series via A Novel
Internal Causality Scheme
- Title(参考訳): MCNS:新たな内部因果性スキームによる時系列内部の因果構造のマイニング
- Authors: Yuanhao Liu and Dehui Du and Zihan Jiang and Anyan Huang and Yiyang Li
- Abstract要約: 因果推論により、時系列で様々な変数の隠蔽関係を発見することができる。
本稿では,実世界の出来事の連続を反映した時系列の外部だけでなく,時系列内にも因果関係が存在することを明らかにする。
マイニング因果自然構造(MCNS, Mining Causal Natural Structure)と呼ばれる新しいフレームワークを提案する。
- 参考スコア(独自算出の注目度): 6.413301464838616
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Causal inference permits us to discover covert relationships of various
variables in time series. However, in most existing works, the variables
mentioned above are the dimensions. The causality between dimensions could be
cursory, which hinders the comprehension of the internal relationship and the
benefit of the causal graph to the neural networks (NNs). In this paper, we
find that causality exists not only outside but also inside the time series
because it reflects a succession of events in the real world. It inspires us to
seek the relationship between internal subsequences. However, the challenges
are the hardship of discovering causality from subsequences and utilizing the
causal natural structures to improve NNs. To address these challenges, we
propose a novel framework called Mining Causal Natural Structure (MCNS), which
is automatic and domain-agnostic and helps to find the causal natural
structures inside time series via the internal causality scheme. We evaluate
the MCNS framework and impregnation NN with MCNS on time series classification
tasks. Experimental results illustrate that our impregnation, by refining
attention, shape selection classification, and pruning datasets, drives NN,
even the data itself preferable accuracy and interpretability. Besides, MCNS
provides an in-depth, solid summary of the time series and datasets.
- Abstract(参考訳): 因果推論は、時系列における様々な変数の隠れた関係を発見できる。
しかし、既存のほとんどの作品において、上記の変数は次元である。
次元間の因果関係はカーソルであり、内部関係の理解とニューラルネットワーク(NN)への因果グラフの利点を妨げる。
本稿では,実世界の事象の連続を反映した因果関係が,外部だけでなく時系列内部にも存在していることを見出した。
内部のサブシーケンス間の関係を求めるきっかけになります。
しかし、課題は、サブシーケンスから因果性を発見し、因果自然構造を利用してnnを改善するという困難である。
これらの課題に対処するために、マイニング因果自然構造(MCNS)と呼ばれる新しいフレームワークを提案し、これは自動的でドメインに依存しないものであり、内部因果性スキームを通じて時系列内の因果自然構造を見つけるのに役立つ。
時系列分類タスクにおいて,MCNS のフレームワークと NN を MCNS と組み合わせて評価する。
実験の結果, 注意の強化, 形状選択の分類, データセットの刈り込みにより, nn を駆動し, そのデータ自体も精度と解釈性が望ましいことがわかった。
さらに、MCNSは時系列とデータセットの詳細な、しっかりとした要約を提供する。
関連論文リスト
- Causal Discovery from Time-Series Data with Short-Term Invariance-Based Convolutional Neural Networks [12.784885649573994]
時系列データによる因果発見は、スライス内(同時)とスライス間(時差)の両方の因果関係を捉えることを目的としている。
我々は, textbfShort-textbfTerm textbfInvariance に着目した勾配に基づく因果探索手法 STIC を提案する。
論文 参考訳(メタデータ) (2024-08-15T08:43:28Z) - Causal Discovery in Semi-Stationary Time Series [32.424281626708336]
本研究では,観測時系列における因果関係を発見するための制約に基づく非パラメトリックアルゴリズムを提案する。
このアルゴリズムは離散時系列における因果関係の同定に有効であることを示す。
論文 参考訳(メタデータ) (2024-07-10T00:55:38Z) - Causal Inference in Gene Regulatory Networks with GFlowNet: Towards
Scalability in Large Systems [87.45270862120866]
我々は、GRNにおける因果構造学習を強化する新しいフレームワークとしてSwift-DynGFNを紹介した。
具体的には、Swift-DynGFNは、並列化を高め、計算コストを下げるために、遺伝子的に独立性を利用する。
論文 参考訳(メタデータ) (2023-10-05T14:59:19Z) - CUTS: Neural Causal Discovery from Irregular Time-Series Data [27.06531262632836]
時系列データからの因果発見は、機械学習における中心的なタスクである。
本稿では,ニューラルグランガー因果探索アルゴリズムであるCUTSについて述べる。
提案手法は,非理想的な観測を行う実アプリケーションに因果発見を適用するための有望なステップとなる。
論文 参考訳(メタデータ) (2023-02-15T04:16:34Z) - Hierarchical Graph Neural Networks for Causal Discovery and Root Cause
Localization [52.72490784720227]
REASONはTopological Causal DiscoveryとPersonal Causal Discoveryで構成されている。
Topological Causal Discoveryコンポーネントは、根本原因を辿るために断層伝播をモデル化することを目的としている。
個々の因果発見コンポーネントは、単一のシステムエンティティの突然の変化パターンのキャプチャに重点を置いている。
論文 参考訳(メタデータ) (2023-02-03T20:17:45Z) - On the Intrinsic Structures of Spiking Neural Networks [66.57589494713515]
近年、時間依存データやイベント駆動データを扱う大きな可能性から、SNNへの関心が高まっている。
スパイキング計算における本質的な構造の影響を総合的に調査する研究が数多く行われている。
この研究はSNNの本質的な構造を深く掘り下げ、SNNの表現性への影響を解明する。
論文 参考訳(メタデータ) (2022-06-21T09:42:30Z) - The Causal Neural Connection: Expressiveness, Learnability, and
Inference [125.57815987218756]
構造因果モデル (Structuor causal model, SCM) と呼ばれるオブジェクトは、調査中のシステムのランダムな変動のメカニズムと源の集合を表す。
本稿では, 因果的階層定理 (Thm. 1, Bareinboim et al., 2020) がまだニューラルモデルに対して成り立っていることを示す。
我々はニューラル因果モデル(NCM)と呼ばれる特殊なタイプのSCMを導入し、因果推論に必要な構造的制約をエンコードする新しいタイプの帰納バイアスを定式化する。
論文 参考訳(メタデータ) (2021-07-02T01:55:18Z) - Consistency of mechanistic causal discovery in continuous-time using
Neural ODEs [85.7910042199734]
ダイナミカルシステムの研究において,連続時間における因果的発見を検討する。
本稿では,ニューラルネットワークを用いた因果探索アルゴリズムを提案する。
論文 参考訳(メタデータ) (2021-05-06T08:48:02Z) - Causal Expectation-Maximisation [70.45873402967297]
ポリツリーグラフを特徴とするモデルにおいても因果推論はNPハードであることを示す。
我々は因果EMアルゴリズムを導入し、分類的表現変数のデータから潜伏変数の不確かさを再構築する。
我々は、反事実境界が構造方程式の知識なしにしばしば計算できるというトレンドのアイデアには、目立たずの制限があるように思える。
論文 参考訳(メタデータ) (2020-11-04T10:25:13Z) - Neural Additive Vector Autoregression Models for Causal Discovery in
Time Series [1.160208922584163]
本稿では,非線型関係を発見できる因果構造学習へのニューラルアプローチを提案する。
時系列の時間進化から(付加的な)グランガー因果関係を抽出するディープニューラルネットワークを訓練する。
この手法は、因果探索のための様々なベンチマークデータセットに対して最先端の結果を得る。
論文 参考訳(メタデータ) (2020-10-19T12:44:25Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。