論文の概要: Systematic Review of Experimental Paradigms and Deep Neural Networks for
Electroencephalography-Based Cognitive Workload Detection
- arxiv url: http://arxiv.org/abs/2309.07163v1
- Date: Mon, 11 Sep 2023 14:27:22 GMT
- ステータス: 処理完了
- システム内更新日: 2023-09-15 17:38:55.291136
- Title: Systematic Review of Experimental Paradigms and Deep Neural Networks for
Electroencephalography-Based Cognitive Workload Detection
- Title(参考訳): 脳電図に基づく認知負荷検出のための実験パラダイムとディープニューラルネットワークの体系的レビュー
- Authors: Vishnu KN and Cota Navin Gupta
- Abstract要約: 本稿では脳波(EEG)に基づく認知負荷推定の体系的レビューを要約する。
この論文の焦点は2つある: 離散的および定量的な認知的負荷のレベルを確実に引き出すために使用される異なる実験パラダイムを特定する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This article summarizes a systematic review of the electroencephalography
(EEG)-based cognitive workload (CWL) estimation. The focus of the article is
twofold: identify the disparate experimental paradigms used for reliably
eliciting discreet and quantifiable levels of cognitive load and the specific
nature and representational structure of the commonly used input formulations
in deep neural networks (DNNs) used for signal classification. The analysis
revealed a number of studies using EEG signals in its native representation of
a two-dimensional matrix for offline classification of CWL. However, only a few
studies adopted an online or pseudo-online classification strategy for
real-time CWL estimation. Further, only a couple of interpretable DNNs and a
single generative model were employed for cognitive load detection till date
during this review. More often than not, researchers were using DNNs as
black-box type models. In conclusion, DNNs prove to be valuable tools for
classifying EEG signals, primarily due to the substantial modeling power
provided by the depth of their network architecture. It is further suggested
that interpretable and explainable DNN models must be employed for cognitive
workload estimation since existing methods are limited in the face of the
non-stationary nature of the signal.
- Abstract(参考訳): 本稿では脳波(EEG)に基づく認知作業負荷(CWL)推定の体系的レビューを要約する。
信号分類に使用されるディープニューラルネットワーク(DNN)において、離散的および定量的な認知負荷レベルを確実に引き出すために使用される異なる実験パラダイムと、一般的に使用される入力定式化の特性と表現構造を識別する。
この分析により、CWLのオフライン分類のための2次元行列のネイティブ表現における脳波信号を用いた多くの研究が明らかになった。
しかし、リアルタイムCWL推定のためにオンラインまたは擬似オンライン分類戦略を採用した研究はごくわずかである。
さらに,本レビューの日までの認知負荷検出には,解釈可能なdnnと単一生成モデルのみを用いた。
多くの場合、研究者はブラックボックス型モデルとしてDNNを使用していた。
結論として、dnnは、主にネットワークアーキテクチャの深さによって提供される実質的なモデリング能力のために、脳波信号の分類に有用なツールであることが証明された。
さらに,信号の非定常的性質に対して既存の手法が制限されているため,解釈可能かつ説明可能なDNNモデルを認知的ワークロード推定に利用する必要があることが示唆された。
関連論文リスト
- Cognitive Networks and Performance Drive fMRI-Based State Classification Using DNN Models [0.0]
我々は、個々の認知状態を分類するために、構造的に異なる2つのDNNモデルと相補的なDNNモデルを用いる。
アーキテクチャ上の違いにもかかわらず、両者のモデルが常に予測精度と個人の認知性能との間に堅牢な関係を生んでいることを示す。
論文 参考訳(メタデータ) (2024-08-14T15:25:51Z) - Manipulating Feature Visualizations with Gradient Slingshots [54.31109240020007]
本稿では,モデルの決定過程に大きな影響を及ぼすことなく,特徴可視化(FV)を操作する新しい手法を提案する。
ニューラルネットワークモデルにおける本手法の有効性を評価し,任意の選択したニューロンの機能を隠蔽する能力を示す。
論文 参考訳(メタデータ) (2024-01-11T18:57:17Z) - How neural networks learn to classify chaotic time series [77.34726150561087]
本研究では,通常の逆カオス時系列を分類するために訓練されたニューラルネットワークの内部動作について検討する。
入力周期性とアクティベーション周期の関係は,LKCNNモデルの性能向上の鍵となる。
論文 参考訳(メタデータ) (2023-06-04T08:53:27Z) - Energy-based Out-of-Distribution Detection for Graph Neural Networks [76.0242218180483]
我々は,GNNSafeと呼ばれるグラフ上での学習のための,シンプルで強力で効率的なOOD検出モデルを提案する。
GNNSafeは、最先端技術に対するAUROCの改善を最大17.0%で達成しており、そのような未開発領域では単純だが強力なベースラインとして機能する可能性がある。
論文 参考訳(メタデータ) (2023-02-06T16:38:43Z) - Tensor-CSPNet: A Novel Geometric Deep Learning Framework for Motor
Imagery Classification [14.95694356964053]
対称正定値(SPD)上での脳波信号を特徴付ける幾何学的深層学習フレームワークCSPNetを提案する。
CSPNetは、2つのMI-EEGデータセットのクロスバリデーションとホールドアウトシナリオにおいて、現在の最先端のパフォーマンスを達成またはわずかに上回る。
論文 参考訳(メタデータ) (2022-02-05T02:52:23Z) - Evaluation of Interpretability for Deep Learning algorithms in EEG
Emotion Recognition: A case study in Autism [4.752074022068791]
説明可能な人工知能(XAI)に関する現在のモデルでは、特徴関連性を測定するための信頼性の欠如が明らかで定量化されている。
この研究は、脳波に基づく顔の感情認識を成功させるために、より透明な特徴関連計算を統合する最初のものである。
論文 参考訳(メタデータ) (2021-11-25T18:28:29Z) - FF-NSL: Feed-Forward Neural-Symbolic Learner [70.978007919101]
本稿では,Feed-Forward Neural-Symbolic Learner (FF-NSL) と呼ばれるニューラルシンボリック学習フレームワークを紹介する。
FF-NSLは、ラベル付き非構造化データから解釈可能な仮説を学習するために、Answer Setセマンティクスに基づく最先端のICPシステムとニューラルネットワークを統合する。
論文 参考訳(メタデータ) (2021-06-24T15:38:34Z) - Emotional EEG Classification using Connectivity Features and
Convolutional Neural Networks [81.74442855155843]
CNNと脳のつながりを利用した新しい分類システムを導入し,その効果を感情映像分類により検証する。
対象映像の感情的特性に関連する脳接続の集中度は分類性能と相関する。
論文 参考訳(メタデータ) (2021-01-18T13:28:08Z) - Spiking Neural Networks -- Part II: Detecting Spatio-Temporal Patterns [38.518936229794214]
スパイキングニューラルネットワーク(SNN)は、符号化された時間信号で情報を検出するユニークな能力を持つ。
SNNをリカレントニューラルネットワーク(RNN)とみなす支配的アプローチのためのモデルとトレーニングアルゴリズムについてレビューする。
スパイキングニューロンの確率モデルに頼り、勾配推定による局所学習規則の導出を可能にする別のアプローチについて述べる。
論文 参考訳(メタデータ) (2020-10-27T11:47:42Z) - Rectified Linear Postsynaptic Potential Function for Backpropagation in
Deep Spiking Neural Networks [55.0627904986664]
スパイキングニューラルネットワーク(SNN)は、時間的スパイクパターンを用いて情報を表現し、伝達する。
本稿では,情報符号化,シナプス可塑性,意思決定におけるスパイクタイミングダイナミクスの寄与について検討し,将来のDeepSNNやニューロモルフィックハードウェアシステムの設計への新たな視点を提供する。
論文 参考訳(メタデータ) (2020-03-26T11:13:07Z) - Multi-Scale Neural network for EEG Representation Learning in BCI [2.105172041656126]
本稿では,複数の周波数/時間範囲における特徴表現を探索する深層多スケールニューラルネットワークを提案する。
スペクトル時間情報を用いた脳波信号の表現により,提案手法を多種多様なパラダイムに応用することができる。
論文 参考訳(メタデータ) (2020-03-02T04:06:47Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。