論文の概要: Audio-Based Classification of Respiratory Diseases using Advanced Signal
Processing and Machine Learning for Assistive Diagnosis Support
- arxiv url: http://arxiv.org/abs/2309.07183v1
- Date: Tue, 12 Sep 2023 23:54:00 GMT
- ステータス: 処理完了
- システム内更新日: 2023-09-15 17:29:55.427013
- Title: Audio-Based Classification of Respiratory Diseases using Advanced Signal
Processing and Machine Learning for Assistive Diagnosis Support
- Title(参考訳): 高度な信号処理と機械学習を用いた呼吸疾患の音響的分類による診断支援
- Authors: Constantino \'Alvarez Casado, Manuel Lage Ca\~nellas, Matteo Pedone,
Xiaoting Wu, Miguel Bordallo L\'opez
- Abstract要約: 我々の研究は、機械学習モデルをトレーニングするために、呼吸音の医用データベースとして最大規模のものを採用することに焦点を当てている。
実験モード分解とスペクトル分析を用いて,音響データから生理的関連バイオシグナーを抽出する。
健常者と疾患の鑑別において,バランスの取れた精度が87%のバイナリ分類モデルを用いている。
- 参考スコア(独自算出の注目度): 1.9049294570026933
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In global healthcare, respiratory diseases are a leading cause of mortality,
underscoring the need for rapid and accurate diagnostics. To advance rapid
screening techniques via auscultation, our research focuses on employing one of
the largest publicly available medical database of respiratory sounds to train
multiple machine learning models able to classify different health conditions.
Our method combines Empirical Mode Decomposition (EMD) and spectral analysis to
extract physiologically relevant biosignals from acoustic data, closely tied to
cardiovascular and respiratory patterns, making our approach apart in its
departure from conventional audio feature extraction practices. We use Power
Spectral Density analysis and filtering techniques to select Intrinsic Mode
Functions (IMFs) strongly correlated with underlying physiological phenomena.
These biosignals undergo a comprehensive feature extraction process for
predictive modeling. Initially, we deploy a binary classification model that
demonstrates a balanced accuracy of 87% in distinguishing between healthy and
diseased individuals. Subsequently, we employ a six-class classification model
that achieves a balanced accuracy of 72% in diagnosing specific respiratory
conditions like pneumonia and chronic obstructive pulmonary disease (COPD). For
the first time, we also introduce regression models that estimate age and body
mass index (BMI) based solely on acoustic data, as well as a model for gender
classification. Our findings underscore the potential of this approach to
significantly enhance assistive and remote diagnostic capabilities.
- Abstract(参考訳): 世界的な医療において、呼吸器疾患は死亡の主な原因であり、迅速かつ正確な診断の必要性を強調している。
本研究は,呼吸音の医療データベースとして最大級に広く公開されているものを用いて,異なる健康状態の分類が可能な複数の機械学習モデルを訓練することに焦点を当てた。
本手法は経験的モード分解(EMD)とスペクトル分析を併用し, 心血管および呼吸パターンと密接に結びついている音響データから生理的関連バイオシグナールを抽出し, 従来の音声特徴抽出法から分離したアプローチである。
我々は、パワースペクトル密度解析とフィルタリング技術を用いて、基礎となる生理現象と強く相関する固有モード関数(IMF)を選択する。
これらの生体信号は、予測モデリングのための包括的な特徴抽出プロセスを行う。
最初は、健康な人と病気の人の区別において、87%のバランスのとれた精度を示すバイナリ分類モデルを展開しました。
その後,肺炎や慢性閉塞性肺疾患(COPD)などの特定の呼吸器疾患の診断において,バランスの取れた精度が72%に達する6クラス分類モデルを用いた。
また,音響データのみに基づく年齢・身体質量指数(BMI)を推定する回帰モデルや,性別分類のモデルも導入した。
我々の発見は、このアプローチが補助的および遠隔診断能力を大幅に向上する可能性を強調している。
関連論文リスト
- Towards reliable respiratory disease diagnosis based on cough sounds and vision transformers [14.144599890583308]
本稿では,大規模コークスデータセットを用いた自己教師型学習と教師型学習を併用したコークス病分類手法を提案する。
提案手法は、新型コロナウイルスの診断のための2つのベンチマークデータセットと、AUROC 92.5% の COPD/non-COPD 分類のためのプロプライエタリデータセットにおいて、先行技術よりも一貫して優れていることを示す実験結果を得た。
論文 参考訳(メタデータ) (2024-08-28T09:40:40Z) - Real-Time Magnetic Tracking and Diagnosis of COVID-19 via Machine
Learning [2.737411991771932]
新型コロナウイルス(COVID-19)のパンデミックは、安定した公衆衛生介入のための信頼性の高い非侵襲的な診断ツールの重要性を浮き彫りにした。
本研究では、MRSTと機械学習(ML)を融合させて、新型コロナウイルスやその他の呼吸器疾患のリアルタイム追跡と診断のための診断プラットフォームを構築した。
論文 参考訳(メタデータ) (2023-11-01T13:57:33Z) - Patch-Mix Contrastive Learning with Audio Spectrogram Transformer on
Respiratory Sound Classification [19.180927437627282]
本稿では,潜在空間における混合表現を識別するために,新規かつ効果的なパッチ・ミクス・コントラスト学習を提案する。
提案手法はICBHIデータセット上での最先端性能を実現し,4.08%の改善により先行先行スコアを上回った。
論文 参考訳(メタデータ) (2023-05-23T13:04:07Z) - Transfer Learning Based Diagnosis and Analysis of Lung Sound Aberrations [0.35232085374661276]
本研究は、聴診器と音声記録ソフトウェアによって得られた呼吸音を非侵襲的に識別する手法を開発することを目的とする。
各オーディオサンプルの視覚的表現が構築され、視覚を効果的に記述するために使用されるような方法を用いて、分類のためのリソース識別が可能である。
呼吸音響データベースは、95%の精度、88%の精度、86%のリコールスコア、81%のF1スコアを含む最先端の結果を得た。
論文 参考訳(メタデータ) (2023-03-15T04:46:57Z) - Preservation of High Frequency Content for Deep Learning-Based Medical
Image Classification [74.84221280249876]
大量の胸部ラジオグラフィーの効率的な分析は、医師や放射線技師を助けることができる。
本稿では,視覚情報の効率的な識別と符号化のための離散ウェーブレット変換(DWT)を提案する。
論文 参考訳(メタデータ) (2022-05-08T15:29:54Z) - Frequency comb and machine learning-based breath analysis for COVID-19
classification [0.6113111451963646]
本研究では,各呼吸試料中の数万のスペクトル特性を同時に測定する頑健な分析手法を提案する。
コロラド大学における170個のサンプルを用いて, 受信-操作-特性曲線 0.849(4) のクロスバリデーション領域を報告した。
喫煙や腹痛などの他の変数と同様に,男性と女性の呼吸に有意な差が認められた。
論文 参考訳(メタデータ) (2022-02-04T05:58:52Z) - Lung Cancer Lesion Detection in Histopathology Images Using Graph-Based
Sparse PCA Network [93.22587316229954]
ヘマトキシリンとエオシン(H&E)で染色した組織学的肺スライドにおける癌病変の自動検出のためのグラフベーススパース成分分析(GS-PCA)ネットワークを提案する。
我々は,SVM K-rasG12D肺がんモデルから得られたH&Eスライダーの精度・リコール率,Fスコア,谷本係数,レシーバ演算子特性(ROC)の曲線下領域を用いて,提案アルゴリズムの性能評価を行った。
論文 参考訳(メタデータ) (2021-10-27T19:28:36Z) - A multi-stage machine learning model on diagnosis of esophageal
manometry [50.591267188664666]
このフレームワークには、飲み込みレベルにおけるディープラーニングモデルと、学習レベルにおける機能ベースの機械学習モデルが含まれている。
これは、生のマルチスワローデータからHRM研究のCC診断を自動的に予測する最初の人工知能モデルである。
論文 参考訳(メタデータ) (2021-06-25T20:09:23Z) - Variational Knowledge Distillation for Disease Classification in Chest
X-Rays [102.04931207504173]
我々は,X線に基づく疾患分類のための新しい確率的推論フレームワークである反復的知識蒸留(VKD)を提案する。
提案手法の有効性を,X線画像とEHRを用いた3つの公開ベンチマークデータセットに示す。
論文 参考訳(メタデータ) (2021-03-19T14:13:56Z) - Select-ProtoNet: Learning to Select for Few-Shot Disease Subtype
Prediction [55.94378672172967]
本研究は, 類似患者のサブグループを同定し, 数発の疾患のサブタイプ予測問題に焦点を当てた。
新しいモデルを開発するためにメタラーニング技術を導入し、関連する臨床課題から共通の経験や知識を抽出する。
我々の新しいモデルは、単純だが効果的なメタ学習マシンであるPrototypeal Networkと呼ばれる、慎重に設計されたメタラーナーに基づいて構築されている。
論文 参考訳(メタデータ) (2020-09-02T02:50:30Z) - Self-Training with Improved Regularization for Sample-Efficient Chest
X-Ray Classification [80.00316465793702]
挑戦的なシナリオで堅牢なモデリングを可能にするディープラーニングフレームワークを提案する。
その結果,85%のラベル付きデータを用いて,大規模データ設定で学習した分類器の性能に適合する予測モデルを構築することができた。
論文 参考訳(メタデータ) (2020-05-03T02:36:00Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。