論文の概要: ESRO: Experience Assisted Service Reliability against Outages
- arxiv url: http://arxiv.org/abs/2309.07230v1
- Date: Wed, 13 Sep 2023 18:04:52 GMT
- ステータス: 処理完了
- システム内更新日: 2023-10-23 07:49:53.139750
- Title: ESRO: Experience Assisted Service Reliability against Outages
- Title(参考訳): ESRO: 障害に対するサービスの信頼性を支援するエクスペリエンス
- Authors: Sarthak Chakraborty, Shubham Agarwal, Shaddy Garg, Abhimanyu Sethia,
Udit Narayan Pandey, Videh Aggarwal, Shiv Saini
- Abstract要約: 私たちは、障害の根本原因と修復を推奨するESROと呼ばれる診断サービスを構築しています。
当社のモデルは,大企業のいくつかのクラウドサービス障害に対して,2年間にわたって評価を行った。
- 参考スコア(独自算出の注目度): 2.647000585570866
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Modern cloud services are prone to failures due to their complex
architecture, making diagnosis a critical process. Site Reliability Engineers
(SREs) spend hours leveraging multiple sources of data, including the alerts,
error logs, and domain expertise through past experiences to locate the root
cause(s). These experiences are documented as natural language text in outage
reports for previous outages. However, utilizing the raw yet rich
semi-structured information in the reports systematically is time-consuming.
Structured information, on the other hand, such as alerts that are often used
during fault diagnosis, is voluminous and requires expert knowledge to discern.
Several strategies have been proposed to use each source of data separately for
root cause analysis. In this work, we build a diagnostic service called ESRO
that recommends root causes and remediation for failures by utilizing
structured as well as semi-structured sources of data systematically. ESRO
constructs a causal graph using alerts and a knowledge graph using outage
reports, and merges them in a novel way to form a unified graph during
training. A retrieval-based mechanism is then used to search the unified graph
and rank the likely root causes and remediation techniques based on the alerts
fired during an outage at inference time. Not only the individual alerts, but
their respective importance in predicting an outage group is taken into account
during recommendation. We evaluated our model on several cloud service outages
of a large SaaS enterprise over the course of ~2 years, and obtained an average
improvement of 27% in rouge scores after comparing the likely root causes
against the ground truth over state-of-the-art baselines. We further establish
the effectiveness of ESRO through qualitative analysis on multiple real outage
examples.
- Abstract(参考訳): 現代のクラウドサービスは、複雑なアーキテクチャのために障害が発生しやすいため、診断が重要なプロセスになります。
Site Reliability Engineers(SRE)は、過去の経験を通じてアラート、エラーログ、ドメインの専門知識など、複数のデータソースを活用するために、何時間も費やしている。
これらの経験は、以前の機能停止の報告で自然言語テキストとして記録されている。
しかし、レポートに生で豊かな半構造化情報を体系的に利用するのは時間がかかります。
一方で、障害診断時によく使用されるアラートのような構造化情報は、鮮やかであり、識別するには専門家の知識を必要とする。
根本原因分析のために各データソースを別々に使用する戦略がいくつか提案されている。
本研究では,構造的および半構造化データソースを体系的に活用することにより,根本原因と障害の修復を推奨するesroと呼ばれる診断サービスを構築した。
ESROは警告と知識グラフを使用して因果グラフを構築し、トレーニング中に統一グラフを形成する新しい方法でそれらをマージする。
次に、検索ベースのメカニズムを使用して、統合されたグラフを検索し、推測時の停止時に発生した警告に基づいて、潜在的な根本原因と修復テクニックをランク付けする。
個々のアラートだけでなく、停止グループを予測する上でのそれぞれの重要性もレコメンデーション中に考慮される。
私たちは,2年間にわたって大規模saas企業のクラウドサービス障害について評価を行い,最先端のベースライン上での根本原因と根本原因を比較した結果,ルージュスコアの平均値が27%向上した。
さらに,複数の実機能停止例に対する定性解析によりESROの有効性を確立する。
関連論文リスト
- LogRCA: Log-based Root Cause Analysis for Distributed Services [4.049637286678329]
根本原因を記述した最小限のログ行を識別する新しい方法であるLogRCAを提案する。
LogRCAは、希少で未知のエラーに対処するために、半教師付き学習アプローチを使用し、ノイズの多いデータを扱うように設計されている。
4430万のログ行からなる大規模プロダクションログデータセットに対して,当社のアプローチを評価した。
論文 参考訳(メタデータ) (2024-05-22T12:50:56Z) - Exploring LLM-based Agents for Root Cause Analysis [17.053079105858497]
ルート原因分析(RCA)はインシデント管理プロセスの重要な部分である。
大規模言語モデル(LLM)はRCAの実行に使用されているが、追加の診断情報を収集することはできない。
検索ツールを備えたReActエージェントを,マイクロソフトが収集した生産事故のアウト・オブ・ディストリビューション・データセット上で評価する。
論文 参考訳(メタデータ) (2024-03-07T00:44:01Z) - KGroot: Enhancing Root Cause Analysis through Knowledge Graphs and Graph
Convolutional Neural Networks [14.336830860792707]
KGrootはイベント知識とイベント間の相関を使って根本原因推論を行う。
実験では、KGrootは第2レベルにおいて93.5%の確率で根本原因を特定できることを示した。
論文 参考訳(メタデータ) (2024-02-11T10:30:38Z) - Multi-modal Causal Structure Learning and Root Cause Analysis [67.67578590390907]
根本原因局所化のためのマルチモーダル因果構造学習手法であるMulanを提案する。
ログ選択言語モデルを利用してログ表現学習を行い、ログシーケンスを時系列データに変換する。
また、モダリティの信頼性を評価し、最終因果グラフを共同学習するための新しいキーパフォーマンスインジケータ対応アテンション機構も導入する。
論文 参考訳(メタデータ) (2024-02-04T05:50:38Z) - Disentangled Causal Graph Learning for Online Unsupervised Root Cause
Analysis [49.910053255238566]
ルート原因分析(RCA)は、システム監視データを分析することにより、システム障害/障害の根本原因を特定することができる。
従来の研究は主にオフラインのRCAアルゴリズムの開発に重点を置いており、しばしば手動でRCAプロセスを開始する必要がある。
我々は、RCAプロセスを自動的に起動し、RCAモデルを漸進的に更新できる新しいオンラインRCAフレームワークであるCORALを提案する。
論文 参考訳(メタデータ) (2023-05-18T01:27:48Z) - Mining Root Cause Knowledge from Cloud Service Incident Investigations
for AIOps [71.12026848664753]
サービス破壊インシデントの根本原因分析(RCA)は、ITプロセスにおける最も重要かつ複雑なタスクの1つです。
本研究では、Salesforceで構築されたICAと、ダウンストリームのインシデントサーチとレトリーバルベースのRCAパイプラインについて紹介する。
論文 参考訳(メタデータ) (2022-04-21T02:33:34Z) - A2Log: Attentive Augmented Log Anomaly Detection [53.06341151551106]
異常検出は、ITサービスの信頼性とサービス性にとってますます重要になる。
既存の教師なし手法は、適切な決定境界を得るために異常な例を必要とする。
我々は,異常判定と異常判定の2段階からなる教師なし異常検出手法であるA2Logを開発した。
論文 参考訳(メタデータ) (2021-09-20T13:40:21Z) - An Influence-based Approach for Root Cause Alarm Discovery in Telecom
Networks [7.438302177990416]
実際には、正確で自己調整可能なアラームの根本原因分析は、ネットワークの複雑さと大量のアラームのために大きな課題である。
因果推論とネットワーク埋め込み技術を組み合わせたルート原因警報定位のためのデータ駆動型フレームワークを提案する。
人工データと現実世界の通信データについて評価し,最適なベースラインに対して有意な改善を示した。
論文 参考訳(メタデータ) (2021-05-07T07:41:46Z) - Robust and Transferable Anomaly Detection in Log Data using Pre-Trained
Language Models [59.04636530383049]
クラウドのような大規模コンピュータシステムにおける異常や障害は、多くのユーザに影響を与える。
システム情報の主要なトラブルシューティングソースとして,ログデータの異常検出のためのフレームワークを提案する。
論文 参考訳(メタデータ) (2021-02-23T09:17:05Z) - TadGAN: Time Series Anomaly Detection Using Generative Adversarial
Networks [73.01104041298031]
TadGANは、GAN(Generative Adversarial Networks)上に構築された教師なしの異常検出手法である。
時系列の時間相関を捉えるために,ジェネレータと批評家のベースモデルとしてLSTMリカレントニューラルネットワークを用いる。
提案手法の性能と一般化性を示すため,いくつかの異常スコアリング手法を検証し,最も適した手法を報告する。
論文 参考訳(メタデータ) (2020-09-16T15:52:04Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。