Secure and Scalable Circuit-based Protocol for Multi-Party Private Set Intersection
- URL: http://arxiv.org/abs/2309.07406v1
- Date: Thu, 14 Sep 2023 03:20:33 GMT
- Title: Secure and Scalable Circuit-based Protocol for Multi-Party Private Set Intersection
- Authors: Jiuheng Su, Zhili Chen,
- Abstract summary: Circuit-based approach has advantages over using custom protocols to achieve this task.
By using secure computation between two parties, our protocol sidesteps the complexities associated with multi-party interactions.
In order to mitigate the high overhead associated with circuit-based constructions, we have further enhanced our protocol by utilizing simple hashing scheme and permutation-based hash functions.
- Score: 4.946124980718068
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We propose a novel protocol for computing a circuit which implements the multi-party private set intersection functionality (PSI). Circuit-based approach has advantages over using custom protocols to achieve this task, since many applications of PSI do not require the computation of the intersection itself, but rather specific functional computations over the items in the intersection. Our protocol represents the pioneering circuit-based multi-party PSI protocol, which builds upon and optimizes the two-party SCS \cite{huang2012private} protocol. By using secure computation between two parties, our protocol sidesteps the complexities associated with multi-party interactions and demonstrates good scalability. In order to mitigate the high overhead associated with circuit-based constructions, we have further enhanced our protocol by utilizing simple hashing scheme and permutation-based hash functions. These tricks have enabled us to minimize circuit size by employing bucketing techniques while simultaneously attaining noteworthy reductions in both computation and communication expenses.
Related papers
- Twin-field-based multi-party quantum key agreement [0.0]
We study a method to extend the twin-field key distribution protocol to a scheme for multi-party quantum key agreement.
We derive the key rate based on the entanglement-based source-replacement scheme.
arXiv Detail & Related papers (2024-09-06T11:51:10Z) - Compiler for Distributed Quantum Computing: a Reinforcement Learning Approach [6.347685922582191]
We introduce a novel compiler that prioritizes reducing the expected execution time by jointly managing the generation and routing of EPR pairs.
We present a real-time, adaptive approach to compiler design, accounting for the nature of entanglement generation and the operational demands of quantum circuits.
Our contributions are twofold: (i) we model the optimal compiler for DQC using a Markov Decision Process (MDP) formulation, establishing the existence of an optimal algorithm, and (ii) we introduce a constrained Reinforcement Learning (RL) method to approximate this optimal compiler.
arXiv Detail & Related papers (2024-04-25T23:03:20Z) - Multi-Party Private Set Intersection: A Circuit-Based Protocol with Jaccard Similarity for Secure and Efficient Anomaly Detection in Network Traffic [10.775721991076793]
We present a new circuit-based protocol for multi-party private set intersection (PSI)
With 7 parties, each possessing a set size of 212, our protocol completes in just 19 seconds.
arXiv Detail & Related papers (2024-01-23T07:59:04Z) - Secure multiparty quantum computations for greatest common divisor and
private set intersection [2.5204420653245245]
We present a secure multiparty quantum computation (MPQC) for computing greatest common divisor (GCD) based on quantum multiparty private set union (PSU) by Liu, Yang, and Li.
arXiv Detail & Related papers (2023-03-30T07:33:30Z) - Multi-User Entanglement Distribution in Quantum Networks Using Multipath
Routing [55.2480439325792]
We propose three protocols that increase the entanglement rate of multi-user applications by leveraging multipath routing.
The protocols are evaluated on quantum networks with NISQ constraints, including limited quantum memories and probabilistic entanglement generation.
arXiv Detail & Related papers (2023-03-06T18:06:00Z) - Decomposition of Matrix Product States into Shallow Quantum Circuits [62.5210028594015]
tensor network (TN) algorithms can be mapped to parametrized quantum circuits (PQCs)
We propose a new protocol for approximating TN states using realistic quantum circuits.
Our results reveal one particular protocol, involving sequential growth and optimization of the quantum circuit, to outperform all other methods.
arXiv Detail & Related papers (2022-09-01T17:08:41Z) - Data post-processing for the one-way heterodyne protocol under
composable finite-size security [62.997667081978825]
We study the performance of a practical continuous-variable (CV) quantum key distribution protocol.
We focus on the Gaussian-modulated coherent-state protocol with heterodyne detection in a high signal-to-noise ratio regime.
This allows us to study the performance for practical implementations of the protocol and optimize the parameters connected to the steps above.
arXiv Detail & Related papers (2022-05-20T12:37:09Z) - Fidelity-Guarantee Entanglement Routing in Quantum Networks [64.49733801962198]
Entanglement routing establishes remote entanglement connection between two arbitrary nodes.
We propose purification-enabled entanglement routing designs to provide fidelity guarantee for multiple Source-Destination (SD) pairs in quantum networks.
arXiv Detail & Related papers (2021-11-15T14:07:22Z) - Composably secure data processing for Gaussian-modulated continuous
variable quantum key distribution [58.720142291102135]
Continuous-variable quantum key distribution (QKD) employs the quadratures of a bosonic mode to establish a secret key between two remote parties.
We consider a protocol with homodyne detection in the general setting of composable finite-size security.
In particular, we analyze the high signal-to-noise regime which requires the use of high-rate (non-binary) low-density parity check codes.
arXiv Detail & Related papers (2021-03-30T18:02:55Z) - Representation matching for delegated quantum computing [64.67104066707309]
representation matching is a generic probabilistic protocol for reducing the cost of quantum computation in a quantum network.
We show that the representation matching protocol is capable of reducing the communication or memory cost to almost minimum in various tasks.
arXiv Detail & Related papers (2020-09-14T18:07:43Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.