論文の概要: ChatGPT MT: Competitive for High- (but not Low-) Resource Languages
- arxiv url: http://arxiv.org/abs/2309.07423v1
- Date: Thu, 14 Sep 2023 04:36:00 GMT
- ステータス: 処理完了
- システム内更新日: 2023-09-15 16:22:07.524379
- Title: ChatGPT MT: Competitive for High- (but not Low-) Resource Languages
- Title(参考訳): chatgpt mt: 高い(でも低い)リソース言語に対する競争
- Authors: Nathaniel R. Robinson, Perez Ogayo, David R. Mortensen and Graham
Neubig
- Abstract要約: 大規模言語モデル(LLM)は、機械翻訳(MT)を含む様々な言語タスクの実行を暗黙的に学習する。
MTコスト分析とともに,204言語を拡張した最初の実験的な証拠を提示する。
分析の結果,ChatGPTの相対的翻訳能力を決定する上で,言語リソースレベルが最も重要な特徴であることが判明した。
- 参考スコア(独自算出の注目度): 62.178282377729566
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Large language models (LLMs) implicitly learn to perform a range of language
tasks, including machine translation (MT). Previous studies explore aspects of
LLMs' MT capabilities. However, there exist a wide variety of languages for
which recent LLM MT performance has never before been evaluated. Without
published experimental evidence on the matter, it is difficult for speakers of
the world's diverse languages to know how and whether they can use LLMs for
their languages. We present the first experimental evidence for an expansive
set of 204 languages, along with MT cost analysis, using the FLORES-200
benchmark. Trends reveal that GPT models approach or exceed traditional MT
model performance for some high-resource languages (HRLs) but consistently lag
for low-resource languages (LRLs), under-performing traditional MT for 84.1% of
languages we covered. Our analysis reveals that a language's resource level is
the most important feature in determining ChatGPT's relative ability to
translate it, and suggests that ChatGPT is especially disadvantaged for LRLs
and African languages.
- Abstract(参考訳): 大規模言語モデル(LLM)は機械翻訳(MT)を含む様々な言語タスクの実行を暗黙的に学習する。
従来,LLMのMT機能について検討した。
しかし、近年のLLM MTの性能が評価されることはなかった多種多様な言語が存在する。
この問題に関する実験的証拠を公表しなければ、世界中の多様な言語の話者が、彼らの言語にllmを使用できるかどうかを知ることは困難である。
FLORES-200ベンチマークを用いてMTコスト分析とともに,204言語を拡張した最初の実験結果を示す。
GPTモデルは、いくつかの高リソース言語(HRL)では従来のMTモデルの性能に近づいたり、超えたりしているが、低リソース言語(LRL)では一貫して遅れている。
分析の結果,ChatGPTの相対的翻訳能力を決定する上で,言語資源レベルが最も重要な特徴であることが判明した。
関連論文リスト
- What do Large Language Models Need for Machine Translation Evaluation? [12.42394213466485]
大規模言語モデル(LLM)は、微調整された多言語事前訓練言語モデルに匹敵する結果が得られる。
本稿では,LLMの機械翻訳品質を評価するために,ソース,参照,翻訳エラー,ガイドラインなどの翻訳情報が必要であるかを検討する。
論文 参考訳(メタデータ) (2024-10-04T09:50:45Z) - Quality or Quantity? On Data Scale and Diversity in Adapting Large Language Models for Low-Resource Translation [62.202893186343935]
低リソース言語に大規模言語モデルを適用するのに何が必要かについて検討する。
我々は、事前トレーニングとスーパーバイザードファインチューニング(SFT)の間に並列データが重要であることを示す。
2つの低リソース言語群にまたがる3つの LLM 実験により,本研究の一般化可能性を示す一貫した傾向が示された。
論文 参考訳(メタデータ) (2024-08-23T00:59:38Z) - On the Evaluation Practices in Multilingual NLP: Can Machine Translation Offer an Alternative to Human Translations? [19.346078451375693]
NLPにおける既存の評価フレームワークについて分析する。
より堅牢で信頼性の高い評価手法を提案する。
より単純なベースラインは,大規模多言語事前学習の恩恵を受けずに比較的高い性能が得られることを示す。
論文 参考訳(メタデータ) (2024-06-20T12:46:12Z) - Self-Distillation for Model Stacking Unlocks Cross-Lingual NLU in 200+ Languages [2.53740603524637]
機械翻訳モデル(MT)は優れた多言語表現を生成し、低リソース言語でも強力な翻訳性能が得られる。
本研究は,MTエンコーダをサンプル効率のよい自己蒸留法により,言語バックボーンに直接組み込むことにより,両世界のベストを得られる。
MT-LLMは、MTエンコーダから固有の多言語表現アライメントを保持しており、低リソース言語は英語中心のLLMに埋め込まれた豊富な知識を取り入れることができる。
論文 参考訳(メタデータ) (2024-06-18T16:00:20Z) - Low-Resource Machine Translation through Retrieval-Augmented LLM Prompting: A Study on the Mambai Language [1.1702440973773898]
本研究では,Timor-Lesteで話される低音源のオーストロネシア語であるMambaiへの英語翻訳における大規模言語モデルの利用について検討した。
提案手法は, 並列文と辞書エントリの戦略的な選択と, プロンプトのための手法である。
辞書をインプロンプトに含め,-IDFで検索した文とセマンティック埋め込みを混合することにより,翻訳品質が大幅に向上することがわかった。
論文 参考訳(メタデータ) (2024-04-07T05:04:38Z) - Enhancing Multilingual Capabilities of Large Language Models through
Self-Distillation from Resource-Rich Languages [60.162717568496355]
大規模言語モデル(LLM)は多言語コーパスで事前訓練されている。
彼らのパフォーマンスは、いくつかのリソース豊富な言語と比較して、ほとんどの言語でまだ遅れています。
論文 参考訳(メタデータ) (2024-02-19T15:07:32Z) - Breaking Language Barriers in Multilingual Mathematical Reasoning: Insights and Observations [59.056367787688146]
本稿では, マルチリンガル数学推論 (xMR) LLM の探索と学習の先駆者である。
我々は10の異なる言語を含む最初の多言語数学推論命令データセットMGSM8KInstructを構築した。
翻訳を利用して、10個の異なる言語を含む最初の多言語数学推論命令データセットMGSM8KInstructを構築した。
論文 参考訳(メタデータ) (2023-10-31T08:09:20Z) - Democratizing LLMs for Low-Resource Languages by Leveraging their English Dominant Abilities with Linguistically-Diverse Prompts [75.33019401706188]
大規模言語モデル(LLM)は、少数の例を単純に観察することで、効果的にタスクを実行することが知られている。
我々は,LLMが任意の言語から英語に翻訳するよう促すために,多種多様な高ソース言語から合成例を組み立てることを提案する。
我々の教師なしプロンプト法は、英語と13のIndic言語と21のアフリカ低リソース言語間の翻訳において、異なる大きさのLLMにおける教師付き少ショット学習と同等に機能する。
論文 参考訳(メタデータ) (2023-06-20T08:27:47Z) - Multilingual Machine Translation with Large Language Models: Empirical Results and Analysis [103.89753784762445]
大規模言語モデル(LLM)は多言語機械翻訳(MMT)の処理において顕著な可能性を示した。
本稿では, MMT における LLM の利点と課題を体系的に検討する。
また,ChatGPTとGPT-4を含む8つのLLMを徹底的に評価した。
論文 参考訳(メタデータ) (2023-04-10T15:51:30Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。