Equivariant Data Augmentation for Generalization in Offline
Reinforcement Learning
- URL: http://arxiv.org/abs/2309.07578v1
- Date: Thu, 14 Sep 2023 10:22:33 GMT
- Title: Equivariant Data Augmentation for Generalization in Offline
Reinforcement Learning
- Authors: Cristina Pinneri, Sarah Bechtle, Markus Wulfmeier, Arunkumar Byravan,
Jingwei Zhang, William F. Whitney, Martin Riedmiller
- Abstract summary: We present a novel approach to address the challenge of generalization in offline reinforcement learning (RL)
Specifically, we aim to improve the agent's ability to generalize to out-of-distribution goals.
We learn a new policy offline based on the augmented dataset, with an off-the-shelf offline RL algorithm.
- Score: 10.00979536266327
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We present a novel approach to address the challenge of generalization in
offline reinforcement learning (RL), where the agent learns from a fixed
dataset without any additional interaction with the environment. Specifically,
we aim to improve the agent's ability to generalize to out-of-distribution
goals. To achieve this, we propose to learn a dynamics model and check if it is
equivariant with respect to a fixed type of transformation, namely translations
in the state space. We then use an entropy regularizer to increase the
equivariant set and augment the dataset with the resulting transformed samples.
Finally, we learn a new policy offline based on the augmented dataset, with an
off-the-shelf offline RL algorithm. Our experimental results demonstrate that
our approach can greatly improve the test performance of the policy on the
considered environments.
Related papers
- Learn from the Learnt: Source-Free Active Domain Adaptation via Contrastive Sampling and Visual Persistence [60.37934652213881]
Domain Adaptation (DA) facilitates knowledge transfer from a source domain to a related target domain.
This paper investigates a practical DA paradigm, namely Source data-Free Active Domain Adaptation (SFADA), where source data becomes inaccessible during adaptation.
We present learn from the learnt (LFTL), a novel paradigm for SFADA to leverage the learnt knowledge from the source pretrained model and actively iterated models without extra overhead.
arXiv Detail & Related papers (2024-07-26T17:51:58Z) - Out of the Ordinary: Spectrally Adapting Regression for Covariate Shift [12.770658031721435]
We propose a method for adapting the weights of the last layer of a pre-trained neural regression model to perform better on input data originating from a different distribution.
We demonstrate how this lightweight spectral adaptation procedure can improve out-of-distribution performance for synthetic and real-world datasets.
arXiv Detail & Related papers (2023-12-29T04:15:58Z) - Improving Generalization of Alignment with Human Preferences through
Group Invariant Learning [56.19242260613749]
Reinforcement Learning from Human Feedback (RLHF) enables the generation of responses more aligned with human preferences.
Previous work shows that Reinforcement Learning (RL) often exploits shortcuts to attain high rewards and overlooks challenging samples.
We propose a novel approach that can learn a consistent policy via RL across various data groups or domains.
arXiv Detail & Related papers (2023-10-18T13:54:15Z) - Consistency Regularization for Generalizable Source-free Domain
Adaptation [62.654883736925456]
Source-free domain adaptation (SFDA) aims to adapt a well-trained source model to an unlabelled target domain without accessing the source dataset.
Existing SFDA methods ONLY assess their adapted models on the target training set, neglecting the data from unseen but identically distributed testing sets.
We propose a consistency regularization framework to develop a more generalizable SFDA method.
arXiv Detail & Related papers (2023-08-03T07:45:53Z) - Offline Reinforcement Learning with Adaptive Behavior Regularization [1.491109220586182]
offline reinforcement learning (RL) defines a sample-efficient learning paradigm, where a policy is learned from static and previously collected datasets.
We propose a novel approach, which we refer to as adaptive behavior regularization (ABR)
ABR enables the policy to adaptively adjust its optimization objective between cloning and improving over the policy used to generate the dataset.
arXiv Detail & Related papers (2022-11-15T15:59:11Z) - Invariance Learning in Deep Neural Networks with Differentiable Laplace
Approximations [76.82124752950148]
We develop a convenient gradient-based method for selecting the data augmentation.
We use a differentiable Kronecker-factored Laplace approximation to the marginal likelihood as our objective.
arXiv Detail & Related papers (2022-02-22T02:51:11Z) - A Regularized Implicit Policy for Offline Reinforcement Learning [54.7427227775581]
offline reinforcement learning enables learning from a fixed dataset, without further interactions with the environment.
We propose a framework that supports learning a flexible yet well-regularized fully-implicit policy.
Experiments and ablation study on the D4RL dataset validate our framework and the effectiveness of our algorithmic designs.
arXiv Detail & Related papers (2022-02-19T20:22:04Z) - Exploring Data Aggregation and Transformations to Generalize across
Visual Domains [0.0]
This thesis contributes to research on Domain Generalization (DG), Domain Adaptation (DA) and their variations.
We propose new frameworks for Domain Generalization and Domain Adaptation which make use of feature aggregation strategies and visual transformations.
We show how our proposed solutions outperform competitive state-of-the-art approaches in established DG and DA benchmarks.
arXiv Detail & Related papers (2021-08-20T14:58:14Z) - SDA: Improving Text Generation with Self Data Augmentation [88.24594090105899]
We propose to improve the standard maximum likelihood estimation (MLE) paradigm by incorporating a self-imitation-learning phase for automatic data augmentation.
Unlike most existing sentence-level augmentation strategies, our method is more general and could be easily adapted to any MLE-based training procedure.
arXiv Detail & Related papers (2021-01-02T01:15:57Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.