論文の概要: Decomposition of linear tensor transformations
- arxiv url: http://arxiv.org/abs/2309.07819v1
- Date: Thu, 14 Sep 2023 16:14:38 GMT
- ステータス: 処理完了
- システム内更新日: 2023-09-15 12:24:24.960310
- Title: Decomposition of linear tensor transformations
- Title(参考訳): 線形テンソル変換の分解
- Authors: Claudio Turchetti
- Abstract要約: 本研究の目的は, 正確なテンソル分解のための数学的枠組みを開発することである。
論文では3つの異なる問題を導出する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/publicdomain/zero/1.0/
- Abstract: One of the main issues in computing a tensor decomposition is how to choose
the number of rank-one components, since there is no finite algorithms for
determining the rank of a tensor. A commonly used approach for this purpose is
to find a low-dimensional subspace by solving an optimization problem and
assuming the number of components is fixed. However, even though this algorithm
is efficient and easy to implement, it often converges to poor local minima and
suffers from outliers and noise. The aim of this paper is to develop a
mathematical framework for exact tensor decomposition that is able to represent
a tensor as the sum of a finite number of low-rank tensors. In the paper three
different problems will be carried out to derive: i) the decomposition of a
non-negative self-adjoint tensor operator; ii) the decomposition of a linear
tensor transformation; iii) the decomposition of a generic tensor.
- Abstract(参考訳): テンソル分解の計算における主要な問題の1つは、テンソルの階数を決定する有限アルゴリズムがないため、ランク1成分の数を選択する方法である。
この目的のためによく用いられるアプローチは、最適化問題を解き、成分の数を固定すると仮定することで低次元の部分空間を見つけることである。
しかしながら、このアルゴリズムは効率的で実装が容易であるが、しばしばローカルのミニマに収束し、外れ値やノイズに悩まされる。
本論文の目的は、テンソルを有限個の低ランクテンソルの和として表現できる正確なテンソル分解のための数学的枠組みを開発することである。
論文では、次の3つの問題を導出するために実行します。
一 非負の自己随伴テンソル作用素の分解
二 線形テンソル変換の分解
三 一般テンソルの分解
関連論文リスト
- Tensor cumulants for statistical inference on invariant distributions [49.80012009682584]
我々は,PCAが信号の大きさの臨界値で計算的に困難になることを示す。
我々は、与えられた次数の不変量に対して明示的でほぼ直交的な基底を与える新しい対象の集合を定義する。
また、異なるアンサンブルを区別する新しい問題も分析できます。
論文 参考訳(メタデータ) (2024-04-29T14:33:24Z) - Scalable CP Decomposition for Tensor Learning using GPU Tensor Cores [47.87810316745786]
本研究では,エクサスケールテンソル分解を支援する圧縮型テンソル分解フレームワークを提案する。
ベースラインと比較すると、エクスカスケール・テンソルは8000倍のテンソルをサポートし、スピードアップは6.95倍である。
また,本手法を遺伝子解析とテンソル層ニューラルネットワークを含む実世界の2つの応用に適用する。
論文 参考訳(メタデータ) (2023-11-22T21:04:59Z) - Average-Case Complexity of Tensor Decomposition for Low-Degree
Polynomials [93.59919600451487]
多くの統計的推論タスクにおいて「統計計算ギャップ」が発生する。
1つの成分が他の成分よりもわずかに大きいランダムオーダー3分解モデルを考える。
テンソルエントリは$ll n3/2$のとき最大成分を正確に推定できるが、$rgg n3/2$のとき失敗する。
論文 参考訳(メタデータ) (2022-11-10T00:40:37Z) - Minimizing low-rank models of high-order tensors: Hardness, span, tight
relaxation, and applications [26.602371644194143]
この基本テンソル問題は 1 以上のテンソル階数に対して NP-hard であることを示す。
低次ランクの場合、提案された連続的な再構成は低複素度勾配に基づく最適化に有効である。
低密度パリティチェックコードや一般復号パリティチェックコードなど,多くの難題に対する有望な結果を示す。
論文 参考訳(メタデータ) (2022-10-16T11:53:42Z) - Near-Linear Time and Fixed-Parameter Tractable Algorithms for Tensor
Decompositions [51.19236668224547]
テンソルの低階近似について検討し,テンソルトレインとタッカー分解に着目した。
テンソル列車の分解には、小さなビクリテリアランクを持つビクリテリア$(1 + eps)$-approximationアルゴリズムと、O(q cdot nnz(A))$ランニングタイムを与える。
さらに、任意のグラフを持つテンソルネットワークにアルゴリズムを拡張します。
論文 参考訳(メタデータ) (2022-07-15T11:55:09Z) - Error Analysis of Tensor-Train Cross Approximation [88.83467216606778]
我々は, テンソル全体の精度保証を行う。
結果は数値実験により検証され、高次テンソルに対するクロス近似の有用性に重要な意味を持つ可能性がある。
論文 参考訳(メタデータ) (2022-07-09T19:33:59Z) - Fast Low-Rank Tensor Decomposition by Ridge Leverage Score Sampling [5.740578698172382]
リッジレバレッジスコア (ridge leverage scores) と呼ばれるランダム化数値線形代数のタッカー分解とツールの利用について検討する。
近似リッジレバレッジスコアを用いて、任意のリッジ回帰問題に対してスケッチされたインスタンスを構築する方法を示す。
本研究では, 合成データと実世界のデータの両方に対して, 大規模かつ低ランクのタッカー分解に対する近似リッジ回帰アルゴリズムの有効性を示す。
論文 参考訳(メタデータ) (2021-07-22T13:32:47Z) - Understanding Deflation Process in Over-parametrized Tensor
Decomposition [17.28303004783945]
過度にパラメータ化されたテンソル分解問題における勾配流のトレーニング力学について検討する。
経験的に、このようなトレーニングプロセスは、まず大きなコンポーネントに適合し、次に小さなコンポーネントを発見する。
論文 参考訳(メタデータ) (2021-06-11T18:51:36Z) - Alternating linear scheme in a Bayesian framework for low-rank tensor
approximation [5.833272638548154]
ベイズ推論問題を解くことにより、与えられたテンソルの低ランク表現を見つける。
本稿では,テンソルトレイン方式で無音変換を行うアルゴリズムを提案する。
論文 参考訳(メタデータ) (2020-12-21T10:15:30Z) - Beyond Lazy Training for Over-parameterized Tensor Decomposition [69.4699995828506]
過度なパラメータ化対象の勾配勾配は遅延学習体制を超え、データ中の特定の低ランク構造を利用する可能性があることを示す。
以上の結果から,過パラメータ化対象の勾配勾配は遅延学習体制を超え,データ中の特定の低ランク構造を利用する可能性が示唆された。
論文 参考訳(メタデータ) (2020-10-22T00:32:12Z) - Robust Tensor Principal Component Analysis: Exact Recovery via
Deterministic Model [5.414544833902815]
本稿では,ロバストテンソル主成分分析法(RTPCA)を提案する。
これは最近開発されたテンソルテンソル積とテンソル特異値分解(t-SVD)に基づいている。
論文 参考訳(メタデータ) (2020-08-05T16:26:10Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。