DADO -- Low-Cost Query Strategies for Deep Active Design Optimization
- URL: http://arxiv.org/abs/2307.04536v2
- Date: Mon, 2 Oct 2023 15:56:21 GMT
- Title: DADO -- Low-Cost Query Strategies for Deep Active Design Optimization
- Authors: Jens Decke, Christian Gruhl, Lukas Rauch, Bernhard Sick
- Abstract summary: We present two selection strategies for self-optimization to reduce the computational cost in multi-objective design optimization problems.
We evaluate our strategies on a large dataset from the domain of fluid dynamics and introduce two new evaluation metrics to determine the model's performance.
- Score: 1.6298921134113031
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: In this experience report, we apply deep active learning to the field of
design optimization to reduce the number of computationally expensive numerical
simulations. We are interested in optimizing the design of structural
components, where the shape is described by a set of parameters. If we can
predict the performance based on these parameters and consider only the
promising candidates for simulation, there is an enormous potential for saving
computing power. We present two selection strategies for self-optimization to
reduce the computational cost in multi-objective design optimization problems.
Our proposed methodology provides an intuitive approach that is easy to apply,
offers significant improvements over random sampling, and circumvents the need
for uncertainty estimation. We evaluate our strategies on a large dataset from
the domain of fluid dynamics and introduce two new evaluation metrics to
determine the model's performance. Findings from our evaluation highlights the
effectiveness of our selection strategies in accelerating design optimization.
We believe that the introduced method is easily transferable to other
self-optimization problems.
Related papers
- An incremental preference elicitation-based approach to learning potentially non-monotonic preferences in multi-criteria sorting [53.36437745983783]
We first construct a max-margin optimization-based model to model potentially non-monotonic preferences.
We devise information amount measurement methods and question selection strategies to pinpoint the most informative alternative in each iteration.
Two incremental preference elicitation-based algorithms are developed to learn potentially non-monotonic preferences.
arXiv Detail & Related papers (2024-09-04T14:36:20Z) - Unleashing the Potential of Large Language Models as Prompt Optimizers: An Analogical Analysis with Gradient-based Model Optimizers [108.72225067368592]
We propose a novel perspective to investigate the design of large language models (LLMs)-based prompts.
We identify two pivotal factors in model parameter learning: update direction and update method.
In particular, we borrow the theoretical framework and learning methods from gradient-based optimization to design improved strategies.
arXiv Detail & Related papers (2024-02-27T15:05:32Z) - End-to-End Learning for Fair Multiobjective Optimization Under
Uncertainty [55.04219793298687]
The Predict-Then-Forecast (PtO) paradigm in machine learning aims to maximize downstream decision quality.
This paper extends the PtO methodology to optimization problems with nondifferentiable Ordered Weighted Averaging (OWA) objectives.
It shows how optimization of OWA functions can be effectively integrated with parametric prediction for fair and robust optimization under uncertainty.
arXiv Detail & Related papers (2024-02-12T16:33:35Z) - Efficient Inverse Design Optimization through Multi-fidelity Simulations, Machine Learning, and Search Space Reduction Strategies [0.8646443773218541]
This paper introduces a methodology designed to augment the inverse design optimization process in scenarios constrained by limited compute.
The proposed methodology is analyzed on two distinct engineering inverse design problems: airfoil inverse design and the scalar field reconstruction problem.
Notably, this method is adaptable across any inverse design application, facilitating a synergy between a representative low-fidelity ML model, and high-fidelity simulation, and can be seamlessly applied across any variety of population-based optimization algorithms.
arXiv Detail & Related papers (2023-12-06T18:20:46Z) - A Survey on Multi-Objective based Parameter Optimization for Deep
Learning [1.3223682837381137]
We focus on exploring the effectiveness of multi-objective optimization strategies for parameter optimization in conjunction with deep neural networks.
The two methods are combined to provide valuable insights into the generation of predictions and analysis in multiple applications.
arXiv Detail & Related papers (2023-05-17T07:48:54Z) - Backpropagation of Unrolled Solvers with Folded Optimization [55.04219793298687]
The integration of constrained optimization models as components in deep networks has led to promising advances on many specialized learning tasks.
One typical strategy is algorithm unrolling, which relies on automatic differentiation through the operations of an iterative solver.
This paper provides theoretical insights into the backward pass of unrolled optimization, leading to a system for generating efficiently solvable analytical models of backpropagation.
arXiv Detail & Related papers (2023-01-28T01:50:42Z) - Regret Bounds and Experimental Design for Estimate-then-Optimize [9.340611077939828]
In practical applications, data is used to make decisions in two steps: estimation and optimization.
Errors in the estimation step can lead estimate-then-optimize to sub-optimal decisions.
We provide a novel bound on this regret for smooth and unconstrained optimization problems.
arXiv Detail & Related papers (2022-10-27T16:13:48Z) - Parameter Tuning Strategies for Metaheuristic Methods Applied to
Discrete Optimization of Structural Design [0.0]
This paper presents several strategies to tune the parameters of metaheuristic methods for (discrete) design optimization of reinforced concrete (RC) structures.
A novel utility metric is proposed, based on the area under the average performance curve.
arXiv Detail & Related papers (2021-10-12T17:34:39Z) - Robust Topology Optimization Using Multi-Fidelity Variational Autoencoders [1.0124625066746595]
A robust topology optimization (RTO) problem identifies a design with the best average performance.
A neural network method is proposed that offers computational efficiency.
Numerical application of the method is shown on the robust design of L-bracket structure with single point load as well as multiple point loads.
arXiv Detail & Related papers (2021-07-19T20:40:51Z) - Conservative Objective Models for Effective Offline Model-Based
Optimization [78.19085445065845]
Computational design problems arise in a number of settings, from synthetic biology to computer architectures.
We propose a method that learns a model of the objective function that lower bounds the actual value of the ground-truth objective on out-of-distribution inputs.
COMs are simple to implement and outperform a number of existing methods on a wide range of MBO problems.
arXiv Detail & Related papers (2021-07-14T17:55:28Z) - An AI-Assisted Design Method for Topology Optimization Without
Pre-Optimized Training Data [68.8204255655161]
An AI-assisted design method based on topology optimization is presented, which is able to obtain optimized designs in a direct way.
Designs are provided by an artificial neural network, the predictor, on the basis of boundary conditions and degree of filling as input data.
arXiv Detail & Related papers (2020-12-11T14:33:27Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.