論文の概要: A Spiking Binary Neuron -- Detector of Causal Links
- arxiv url: http://arxiv.org/abs/2309.08476v1
- Date: Fri, 15 Sep 2023 15:34:17 GMT
- ステータス: 処理完了
- システム内更新日: 2023-09-18 14:12:26.814749
- Title: A Spiking Binary Neuron -- Detector of Causal Links
- Title(参考訳): スパイキング二分ニューロン --因果関係の検出器
- Authors: Mikhail Kiselev, Denis Larionov, Andrey Urusov
- Abstract要約: 因果関係認識は、学習行動、行動計画、外界ダイナミクスの推論を目的としたニューラルネットワークの基本的な操作である。
本研究は、単純なスパイク二元性ニューロンを用いた因果関係認識を実現するための新しいアプローチを提案する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Causal relationship recognition is a fundamental operation in neural networks
aimed at learning behavior, action planning, and inferring external world
dynamics. This operation is particularly crucial for reinforcement learning
(RL). In the context of spiking neural networks (SNNs), events are represented
as spikes emitted by network neurons or input nodes. Detecting causal
relationships within these events is essential for effective RL implementation.
This research paper presents a novel approach to realize causal relationship
recognition using a simple spiking binary neuron. The proposed method leverages
specially designed synaptic plasticity rules, which are both straightforward
and efficient. Notably, our approach accounts for the temporal aspects of
detected causal links and accommodates the representation of spiking signals as
single spikes or tight spike sequences (bursts), as observed in biological
brains. Furthermore, this study places a strong emphasis on the
hardware-friendliness of the proposed models, ensuring their efficient
implementation on modern and future neuroprocessors. Being compared with
precise machine learning techniques, such as decision tree algorithms and
convolutional neural networks, our neuron demonstrates satisfactory accuracy
despite its simplicity. In conclusion, we introduce a multi-neuron structure
capable of operating in more complex environments with enhanced accuracy,
making it a promising candidate for the advancement of RL applications in SNNs.
- Abstract(参考訳): 因果関係認識は、学習行動、行動計画、外界ダイナミクスの推論を目的としたニューラルネットワークの基本的な操作である。
この操作は強化学習(RL)において特に重要である。
スパイクニューラルネットワーク(snn)のコンテキストでは、イベントはネットワークニューロンや入力ノードから発生するスパイクとして表現される。
これらの事象における因果関係の検出は、効果的なRL実装に不可欠である。
本研究は、単純なスパイク二元性ニューロンを用いた因果関係認識を実現するための新しいアプローチを提案する。
提案手法は, 単純かつ効率的である特殊に設計されたシナプス塑性規則を活用できる。
特に, 検出された因果関係の時間的側面を考慮し, スパイク信号の表現を単一スパイクまたはタイトスパイク配列(バースト)として, 生物学的脳で観察した。
さらに本研究は,提案モデルのハードウェアフレンドリ性を重視し,最新のニューロプロセッサ上での効率的な実装を実現する。
決定木アルゴリズムや畳み込みニューラルネットワークといった正確な機械学習技術と比較すると、ニューロンはその単純さにもかかわらず、十分な精度を示す。
結論として,より複雑な環境下で,より高精度に動作可能なマルチニューロン構造を導入し,SNNにおけるRLアプリケーションの進展に期待できる候補となる。
関連論文リスト
- Contrastive Learning in Memristor-based Neuromorphic Systems [55.11642177631929]
スパイクニューラルネットワークは、現代のバックプロパゲーションによって訓練されたディープネットワークに直面する重要な制約の多くを横取りする、ニューロンベースのモデルの重要なファミリーとなっている。
本研究では,前向き・後向き学習のニューロモルフィック形式であるコントラッシブ・シグナル依存型塑性(CSDP)の概念実証を設計し,検討する。
論文 参考訳(メタデータ) (2024-09-17T04:48:45Z) - Exploiting Heterogeneity in Timescales for Sparse Recurrent Spiking Neural Networks for Energy-Efficient Edge Computing [16.60622265961373]
スパイキングニューラルネットワーク(SNN)は、ニューロモルフィックコンピューティングの最前線である。
本稿では,SNNのパフォーマンスに革命をもたらす3つの画期的な研究をまとめる。
論文 参考訳(メタデータ) (2024-07-08T23:33:12Z) - Biologically-Plausible Topology Improved Spiking Actor Network for Efficient Deep Reinforcement Learning [15.143466733327566]
近年の神経科学の進歩により、ヒトの脳は報酬に基づく効果的な学習を達成していることが明らかになった。
Deep Reinforcement Learning (DRL)の成功は主に、関数近似器としてArtificial Neural Networks (ANN)を活用することによる。
そこで我々は,機能近似の新たな代替手法として,生物学的に証明可能なトポロジー改良スパイキング・アクター・ネットワーク(BPT-SAN)を提案する。
論文 参考訳(メタデータ) (2024-03-29T13:25:19Z) - Sparse Multitask Learning for Efficient Neural Representation of Motor
Imagery and Execution [30.186917337606477]
運動画像(MI)と運動実行(ME)タスクのためのスパースマルチタスク学習フレームワークを提案する。
MI-ME分類のためのデュアルタスクCNNモデルが与えられた場合、過渡的な接続に対して、サリエンシに基づくスペーシフィケーションアプローチを適用する。
以上の結果から, この調整された疎水性は, 過度に適合する問題を緩和し, 少ないデータ量でテスト性能を向上させることが示唆された。
論文 参考訳(メタデータ) (2023-12-10T09:06:16Z) - A Hybrid Neural Coding Approach for Pattern Recognition with Spiking
Neural Networks [53.31941519245432]
脳にインスパイアされたスパイクニューラルネットワーク(SNN)は、パターン認識タスクを解く上で有望な能力を示している。
これらのSNNは、情報表現に一様神経コーディングを利用する同質ニューロンに基づいている。
本研究では、SNNアーキテクチャは異種符号化方式を組み込むよう、均質に設計されるべきである、と論じる。
論文 参考訳(メタデータ) (2023-05-26T02:52:12Z) - Contrastive-Signal-Dependent Plasticity: Self-Supervised Learning in Spiking Neural Circuits [61.94533459151743]
この研究は、スパイキングネットワークのシナプスを調整するための神経生物学的に動機づけられたスキームを設計することの課題に対処する。
我々の実験シミュレーションは、繰り返しスパイクネットワークを訓練する際、他の生物学的に証明可能なアプローチに対して一貫した優位性を示す。
論文 参考訳(メタデータ) (2023-03-30T02:40:28Z) - Spiking neural network for nonlinear regression [68.8204255655161]
スパイクニューラルネットワークは、メモリとエネルギー消費を大幅に削減する可能性を持っている。
彼らは、次世代のニューロモルフィックハードウェアによって活用できる時間的および神経的疎結合を導入する。
スパイキングニューラルネットワークを用いた回帰フレームワークを提案する。
論文 参考訳(メタデータ) (2022-10-06T13:04:45Z) - Data-driven emergence of convolutional structure in neural networks [83.4920717252233]
識別タスクを解くニューラルネットワークが、入力から直接畳み込み構造を学習できることを示す。
データモデルを慎重に設計することにより、このパターンの出現は、入力の非ガウス的、高次局所構造によって引き起こされることを示す。
論文 参考訳(メタデータ) (2022-02-01T17:11:13Z) - Towards efficient end-to-end speech recognition with
biologically-inspired neural networks [10.457580011403289]
軸-体性および軸-体性シナプスを模擬した神経接続概念を導入する。
我々は,大規模ASRモデルの生物学的に現実的な実装によって,競争性能が向上できることを初めて実証した。
論文 参考訳(メタデータ) (2021-10-04T21:24:10Z) - Learning in Deep Neural Networks Using a Biologically Inspired Optimizer [5.144809478361604]
人工神経(ANN)とスパイクニューラルネット(SNN)にインスパイアされた新しい生物モデルを提案する。
GRAPESは、ニューラルネットワークの各ノードにおけるエラー信号の重量分布依存変調を実装している。
生物学的にインスパイアされたこのメカニズムは,ネットワークの収束率を体系的に改善し,ANNやSNNの分類精度を大幅に向上させることを示す。
論文 参考訳(メタデータ) (2021-04-23T13:50:30Z) - Rectified Linear Postsynaptic Potential Function for Backpropagation in
Deep Spiking Neural Networks [55.0627904986664]
スパイキングニューラルネットワーク(SNN)は、時間的スパイクパターンを用いて情報を表現し、伝達する。
本稿では,情報符号化,シナプス可塑性,意思決定におけるスパイクタイミングダイナミクスの寄与について検討し,将来のDeepSNNやニューロモルフィックハードウェアシステムの設計への新たな視点を提供する。
論文 参考訳(メタデータ) (2020-03-26T11:13:07Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。