論文の概要: Circular Clustering with Polar Coordinate Reconstruction
- arxiv url: http://arxiv.org/abs/2309.08757v1
- Date: Fri, 15 Sep 2023 20:56:01 GMT
- ステータス: 処理完了
- システム内更新日: 2023-09-19 19:34:03.415029
- Title: Circular Clustering with Polar Coordinate Reconstruction
- Title(参考訳): 極座標再構成による円形クラスタリング
- Authors: Xiaoxiao Sun, Paul Sajda
- Abstract要約: 伝統的なクラスタリングアルゴリズムは、周期成分の違いを区別する能力が限られているため、しばしば不十分である。
そこで本研究では,円筒座標系への射影を利用した新たな解析フレームワークを提案し,偏座標系における物体の表現性を向上する。
我々のアプローチは一般に適用可能であり、ほとんどの最先端のクラスタリングアルゴリズムに組み込むことができる。
- 参考スコア(独自算出の注目度): 6.598049778463762
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: There is a growing interest in characterizing circular data found in
biological systems. Such data are wide ranging and varied, from signal phase in
neural recordings to nucleotide sequences in round genomes. Traditional
clustering algorithms are often inadequate due to their limited ability to
distinguish differences in the periodic component. Current clustering schemes
that work in a polar coordinate system have limitations, such as being only
angle-focused or lacking generality. To overcome these limitations, we propose
a new analysis framework that utilizes projections onto a cylindrical
coordinate system to better represent objects in a polar coordinate system.
Using the mathematical properties of circular data, we show our approach always
finds the correct clustering result within the reconstructed dataset, given
sufficient periodic repetitions of the data. Our approach is generally
applicable and adaptable and can be incorporated into most state-of-the-art
clustering algorithms. We demonstrate on synthetic and real data that our
method generates more appropriate and consistent clustering results compared to
standard methods. In summary, our proposed analysis framework overcomes the
limitations of existing polar coordinate-based clustering methods and provides
a more accurate and efficient way to cluster circular data.
- Abstract(参考訳): 生物学的システムに見られる円形データを特徴づけることへの関心が高まっている。
これらのデータは、神経記録のシグナル位相から丸いゲノムのヌクレオチド配列まで、広範囲にまたがっている。
従来のクラスタリングアルゴリズムは、周期成分の違いを区別する能力が限られているため、しばしば不十分である。
極座標系で機能する現在のクラスタリングスキームには、角度のみに焦点を当てたり、一般性を欠いたりといった制限がある。
これらの限界を克服するために,円筒座標系への投影を利用して極座標系内の物体をよりよく表現する新しい解析フレームワークを提案する。
循環データの数学的特性を用いて, 再構成したデータセット内で常に正しいクラスタリング結果が得られ, データの周期的繰り返しが十分であることを示す。
我々のアプローチは一般に適用可能であり、ほとんどの最先端のクラスタリングアルゴリズムに組み込むことができる。
我々は,本手法が標準手法よりも適切で一貫したクラスタリング結果を生成することを,合成および実データで示す。
要約して,提案する分析フレームワークは,既存の極座標に基づくクラスタリング手法の限界を克服し,より正確かつ効率的な円データクラスタリング方法を提供する。
関連論文リスト
- Instance-Optimal Cluster Recovery in the Labeled Stochastic Block Model [79.46465138631592]
観測されたラベルを用いてクラスタを復元する効率的なアルゴリズムを考案する。
本稿では,期待値と高い確率でこれらの下位境界との性能を一致させる最初のアルゴリズムであるIACを提案する。
論文 参考訳(メタデータ) (2023-06-18T08:46:06Z) - Rethinking k-means from manifold learning perspective [122.38667613245151]
平均推定なしで直接データのクラスタを検出する新しいクラスタリングアルゴリズムを提案する。
具体的には,バタワースフィルタを用いてデータ点間の距離行列を構成する。
異なる視点に埋め込まれた相補的な情報をうまく活用するために、テンソルのSchatten p-norm正規化を利用する。
論文 参考訳(メタデータ) (2023-05-12T03:01:41Z) - Hard Regularization to Prevent Deep Online Clustering Collapse without
Data Augmentation [65.268245109828]
オンラインディープクラスタリング(オンラインディープクラスタリング)とは、機能抽出ネットワークとクラスタリングモデルを組み合わせて、クラスタラベルを処理された各新しいデータポイントまたはバッチに割り当てることである。
オフラインメソッドよりも高速で汎用性が高いが、オンラインクラスタリングは、エンコーダがすべての入力を同じポイントにマッピングし、すべてを単一のクラスタに配置する、崩壊したソリューションに容易に到達することができる。
本稿では,データ拡張を必要としない手法を提案する。
論文 参考訳(メタデータ) (2023-03-29T08:23:26Z) - Hybrid Fuzzy-Crisp Clustering Algorithm: Theory and Experiments [0.0]
本稿では,対象関数の線形項と2次項を組み合わせたファジィクロップクラスタリングアルゴリズムを提案する。
このアルゴリズムでは、クラスタへのデータポイントのメンバシップが、クラスタセンタから十分に離れていれば、自動的に正確にゼロに設定される。
提案アルゴリズムは、不均衡なデータセットの従来の手法よりも優れており、よりバランスの取れたデータセットと競合することができる。
論文 参考訳(メタデータ) (2023-03-25T05:27:26Z) - Fast and explainable clustering based on sorting [0.0]
我々はCLASSIXと呼ばれる高速で説明可能なクラスタリング手法を提案する。
このアルゴリズムは2つのスカラーパラメータ、すなわちアグリゲーションのための距離パラメータと、最小クラスタサイズを制御する別のパラメータによって制御される。
実験により, CLASSIXは最先端クラスタリングアルゴリズムと競合することを示した。
論文 参考訳(メタデータ) (2022-02-03T08:24:21Z) - Anomaly Clustering: Grouping Images into Coherent Clusters of Anomaly
Types [60.45942774425782]
我々は異常クラスタリングを導入し、その目標はデータを異常型の一貫性のあるクラスタにまとめることである。
これは異常検出とは違い、その目標は異常を通常のデータから分割することである。
パッチベースの事前訓練されたディープ埋め込みとオフザシェルフクラスタリング手法を用いた,単純で効果的なクラスタリングフレームワークを提案する。
論文 参考訳(メタデータ) (2021-12-21T23:11:33Z) - Spatially Coherent Clustering Based on Orthogonal Nonnegative Matrix
Factorization [0.0]
本稿では,クラスタメンバシップ行列の総変動(TV)正規化手順に基づく作業クラスタリングモデルを紹介する。
マトリックス支援レーザー脱離イオン化イメージング測定から得られた超スペクトルデータセット上の提案手法をすべて数値的に評価する。
論文 参考訳(メタデータ) (2021-04-25T23:40:41Z) - Scalable Hierarchical Agglomerative Clustering [65.66407726145619]
既存のスケーラブルな階層的クラスタリング手法は、スピードの質を犠牲にする。
我々は、品質を犠牲にせず、数十億のデータポイントまでスケールする、スケーラブルで集約的な階層的クラスタリング法を提案する。
論文 参考訳(メタデータ) (2020-10-22T15:58:35Z) - Local Graph Clustering with Network Lasso [90.66817876491052]
局所グラフクラスタリングのためのネットワークLasso法の統計的および計算的性質について検討する。
nLassoによって提供されるクラスタは、クラスタ境界とシードノードの間のネットワークフローを通じて、エレガントに特徴付けられる。
論文 参考訳(メタデータ) (2020-04-25T17:52:05Z) - Autoencoder-based time series clustering with energy applications [0.0]
時系列クラスタリングは、データの特定の性質のため、難しい作業である。
本稿では,畳み込み型オートエンコーダとk-メノイドアルゴリズムの組み合わせによる時系列クラスタリングについて検討する。
論文 参考訳(メタデータ) (2020-02-10T10:04:29Z) - On clustering uncertain and structured data with Wasserstein barycenters
and a geodesic criterion for the number of clusters [0.0]
この研究は、ワッサーシュタインのバリセンターの概念を考察し、クラスタリングタスクが実行されるワッサーシュタイン空間の内在幾何学に基づく適切なクラスタリング指標を伴って考える。
このようなクラスタリング手法は、観測/実験誤差が重要である多くの分野において高く評価されている。
この観点から、各観測は適切な確率尺度によって識別され、提案したクラスタリングスキームは識別基準に依存する。
論文 参考訳(メタデータ) (2019-12-26T08:46:00Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。