論文の概要: Graph-enabled Reinforcement Learning for Time Series Forecasting with
Adaptive Intelligence
- arxiv url: http://arxiv.org/abs/2309.10186v1
- Date: Mon, 18 Sep 2023 22:25:12 GMT
- ステータス: 処理完了
- システム内更新日: 2023-09-20 17:18:02.061016
- Title: Graph-enabled Reinforcement Learning for Time Series Forecasting with
Adaptive Intelligence
- Title(参考訳): アダプティブインテリジェンスを用いた時系列予測のためのグラフ対応強化学習
- Authors: Thanveer Shaik, Xiaohui Tao, Haoran Xie, Lin Li, Jianming Yong, and
Yuefeng Li
- Abstract要約: グラフニューラルネットワーク(GNN)と強化学習(RL)を用いたモニタリングによる時系列データの予測手法を提案する。
GNNは、データのグラフ構造をモデルに明示的に組み込むことができ、時間的依存関係をより自然な方法でキャプチャすることができる。
このアプローチは、医療、交通、天気予報など、複雑な時間構造におけるより正確な予測を可能にする。
- 参考スコア(独自算出の注目度): 11.249626785206003
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Reinforcement learning is well known for its ability to model sequential
tasks and learn latent data patterns adaptively. Deep learning models have been
widely explored and adopted in regression and classification tasks. However,
deep learning has its limitations such as the assumption of equally spaced and
ordered data, and the lack of ability to incorporate graph structure in terms
of time-series prediction. Graphical neural network (GNN) has the ability to
overcome these challenges and capture the temporal dependencies in time-series
data. In this study, we propose a novel approach for predicting time-series
data using GNN and monitoring with Reinforcement Learning (RL). GNNs are able
to explicitly incorporate the graph structure of the data into the model,
allowing them to capture temporal dependencies in a more natural way. This
approach allows for more accurate predictions in complex temporal structures,
such as those found in healthcare, traffic and weather forecasting. We also
fine-tune our GraphRL model using a Bayesian optimisation technique to further
improve performance. The proposed framework outperforms the baseline models in
time-series forecasting and monitoring. The contributions of this study include
the introduction of a novel GraphRL framework for time-series prediction and
the demonstration of the effectiveness of GNNs in comparison to traditional
deep learning models such as RNNs and LSTMs. Overall, this study demonstrates
the potential of GraphRL in providing accurate and efficient predictions in
dynamic RL environments.
- Abstract(参考訳): 強化学習は、逐次タスクをモデル化し、潜在データパターンを適応的に学習する能力でよく知られている。
ディープラーニングモデルは、回帰と分類タスクで広く研究され、採用されている。
しかし、深層学習には、等間隔データや順序データの仮定、時系列予測の観点からグラフ構造を組み込む能力の欠如といった制限がある。
グラフィカルニューラルネットワーク(gnn)は、これらの課題を克服し、時系列データの時間依存性をキャプチャする能力を持つ。
本研究では,GNNを用いた時系列データの予測と強化学習(RL)によるモニタリング手法を提案する。
GNNは、データのグラフ構造をモデルに明示的に組み込むことができ、時間的依存関係をより自然な方法でキャプチャすることができる。
このアプローチは、医療、交通、天気予報など、複雑な時間構造におけるより正確な予測を可能にする。
また、ベイズ最適化技術を用いてGraphRLモデルを微調整し、さらなる性能向上を図る。
提案されたフレームワークは、時系列予測と監視においてベースラインモデルを上回る。
本研究の貢献は,時系列予測のための新しいgraphrlフレームワークの導入と,rnnやlstmといった従来のディープラーニングモデルとの比較によるgnnの有効性の実証である。
本研究は, 動的RL環境において, 高精度かつ効率的に予測できるグラフRLの可能性を示す。
関連論文リスト
- DyG-Mamba: Continuous State Space Modeling on Dynamic Graphs [59.434893231950205]
動的グラフ学習は、現実世界のシステムにおける進化の法則を明らかにすることを目的としている。
動的グラフ学習のための新しい連続状態空間モデルDyG-Mambaを提案する。
我々はDyG-Mambaがほとんどのデータセットで最先端のパフォーマンスを達成することを示す。
論文 参考訳(メタデータ) (2024-08-13T15:21:46Z) - Adaptive Dependency Learning Graph Neural Networks [5.653058780958551]
本稿では,ニューラルネットワークと統計構造学習モデルを組み合わせたハイブリッドアプローチを提案する。
提案手法は,事前定義された依存性グラフを使わずに,実世界のベンチマークデータセットを用いて性能を著しく向上させる。
論文 参考訳(メタデータ) (2023-12-06T20:56:23Z) - FourierGNN: Rethinking Multivariate Time Series Forecasting from a Pure
Graph Perspective [48.00240550685946]
現在の最先端グラフニューラルネットワーク(GNN)ベースの予測手法は、通常、シリーズ間(空間)のダイナミックスとシリーズ内(時間)の依存関係をキャプチャするために、グラフネットワーク(GCNなど)と時間ネットワーク(LSTMなど)の両方を必要とする。
提案するフーリエグラフ演算子(FGO)を積み重ねて,フーリエ空間で行列乗算を行うことにより,新しいフーリエグラフニューラルネットワーク(FourierGNN)を提案する。
7つのデータセットに対する実験は、より効率が良く、パラメータも少ないという優れた性能を示した。
論文 参考訳(メタデータ) (2023-11-10T17:13:26Z) - Label Deconvolution for Node Representation Learning on Large-scale
Attributed Graphs against Learning Bias [75.44877675117749]
本稿では,GNNの逆写像に対する新しい,スケーラブルな近似による学習バイアスを軽減するために,ラベルの効率的な正規化手法,すなわちラベルのデコンボリューション(LD)を提案する。
実験では、LDはOpen Graphデータセットのベンチマークで最先端のメソッドを大幅に上回っている。
論文 参考訳(メタデータ) (2023-09-26T13:09:43Z) - Sparsity exploitation via discovering graphical models in multi-variate
time-series forecasting [1.2762298148425795]
本稿では,グラフ生成モジュールとGNN予測モジュールを含む分離学習手法を提案する。
まず、Graphical Lasso(またはGraphLASSO)を使用して、データから空間パターンを直接利用してグラフ構造を構築します。
次に、これらのグラフ構造と入力データをGCRN(Graph Convolutional Recurrent Network)に適合させて予測モデルをトレーニングする。
論文 参考訳(メタデータ) (2023-06-29T16:48:00Z) - Online Evolutionary Neural Architecture Search for Multivariate
Non-Stationary Time Series Forecasting [72.89994745876086]
本研究は、オンラインニューロ進化に基づくニューラルアーキテクチャサーチ(ONE-NAS)アルゴリズムを提案する。
ONE-NASは、オンライン予測タスクのためにリカレントニューラルネットワーク(RNN)を自動設計し、動的にトレーニングする新しいニューラルネットワーク探索手法である。
その結果、ONE-NASは従来の統計時系列予測法よりも優れていた。
論文 参考訳(メタデータ) (2023-02-20T22:25:47Z) - Space-Time Graph Neural Networks with Stochastic Graph Perturbations [100.31591011966603]
時空間グラフニューラルネットワーク(ST-GNN)は、時間変動データの効率的なグラフ表現を学習する。
本稿では,ST-GNNの特性を再検討し,安定なグラフ安定性を示す。
解析の結果,ST-GNNは時間変化グラフ上での移動学習に適していることが示唆された。
論文 参考訳(メタデータ) (2022-10-28T16:59:51Z) - Pre-training Enhanced Spatial-temporal Graph Neural Network for
Multivariate Time Series Forecasting [13.441945545904504]
スケーラブルな時系列事前学習モデル(STEP)によりSTGNNが拡張される新しいフレームワークを提案する。
具体的には、非常に長期の歴史時系列から時間パターンを効率的に学習するための事前学習モデルを設計する。
我々のフレームワークは下流のSTGNNを著しく強化することができ、事前学習モデルは時間パターンを適切にキャプチャする。
論文 参考訳(メタデータ) (2022-06-18T04:24:36Z) - The World as a Graph: Improving El Ni\~no Forecasts with Graph Neural
Networks [0.00916150060695978]
季節予測へのグラフニューラルネットワークの最初の応用を提案する。
当社のモデルであるGraphinoは、最先端のディープラーニングベースのモデルで最大6ヶ月の予測を上回ります。
論文 参考訳(メタデータ) (2021-04-11T19:55:55Z) - Discrete Graph Structure Learning for Forecasting Multiple Time Series [14.459541930646205]
時系列予測は統計学、経済学、コンピュータ科学において広く研究されている。
本研究では,グラフが未知である場合,グラフニューラルネットワーク(GNN)を同時に学習することを提案する。
経験的評価は、グラフ構造学習のための最近提案されたバイレベル学習アプローチよりも、よりシンプルで効率的で優れたパフォーマンスを示す。
論文 参考訳(メタデータ) (2021-01-18T03:36:33Z) - Connecting the Dots: Multivariate Time Series Forecasting with Graph
Neural Networks [91.65637773358347]
多変量時系列データに特化して設計された汎用グラフニューラルネットワークフレームワークを提案する。
グラフ学習モジュールを用いて,変数間の一方向関係を自動的に抽出する。
提案手法は,4つのベンチマークデータセットのうち3つにおいて,最先端のベースライン手法よりも優れている。
論文 参考訳(メタデータ) (2020-05-24T04:02:18Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。