ProtoKD: Learning from Extremely Scarce Data for Parasite Ova
Recognition
- URL: http://arxiv.org/abs/2309.10210v1
- Date: Mon, 18 Sep 2023 23:49:04 GMT
- Title: ProtoKD: Learning from Extremely Scarce Data for Parasite Ova
Recognition
- Authors: Shubham Trehan, Udhav Ramachandran, Ruth Scimeca, Sathyanarayanan N.
Aakur
- Abstract summary: We introduce ProtoKD, one of the first approaches to tackle the problem of multi-class parasitic ova recognition using extremely scarce data.
We establish a new benchmark to drive research in this critical direction and validate that the proposed ProtoKD framework achieves state-of-the-art performance.
- Score: 5.224806515926022
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Developing reliable computational frameworks for early parasite detection,
particularly at the ova (or egg) stage is crucial for advancing healthcare and
effectively managing potential public health crises. While deep learning has
significantly assisted human workers in various tasks, its application and
diagnostics has been constrained by the need for extensive datasets. The
ability to learn from an extremely scarce training dataset, i.e., when fewer
than 5 examples per class are present, is essential for scaling deep learning
models in biomedical applications where large-scale data collection and
annotation can be expensive or not possible (in case of novel or unknown
infectious agents). In this study, we introduce ProtoKD, one of the first
approaches to tackle the problem of multi-class parasitic ova recognition using
extremely scarce data. Combining the principles of prototypical networks and
self-distillation, we can learn robust representations from only one sample per
class. Furthermore, we establish a new benchmark to drive research in this
critical direction and validate that the proposed ProtoKD framework achieves
state-of-the-art performance. Additionally, we evaluate the framework's
generalizability to other downstream tasks by assessing its performance on a
large-scale taxonomic profiling task based on metagenomes sequenced from
real-world clinical data.
Related papers
- Weakly supervised deep learning model with size constraint for prostate cancer detection in multiparametric MRI and generalization to unseen domains [0.90668179713299]
We show that the model achieves on-par performance with strong fully supervised baseline models.
We also observe a performance decrease for both fully supervised and weakly supervised models when tested on unseen data domains.
arXiv Detail & Related papers (2024-11-04T12:24:33Z) - An Efficient Contrastive Unimodal Pretraining Method for EHR Time Series Data [35.943089444017666]
We propose an efficient method of contrastive pretraining tailored for long clinical timeseries data.
Our model demonstrates the ability to impute missing measurements, providing clinicians with deeper insights into patient conditions.
arXiv Detail & Related papers (2024-10-11T19:05:25Z) - Learnable Weight Initialization for Volumetric Medical Image Segmentation [66.3030435676252]
We propose a learnable weight-based hybrid medical image segmentation approach.
Our approach is easy to integrate into any hybrid model and requires no external training data.
Experiments on multi-organ and lung cancer segmentation tasks demonstrate the effectiveness of our approach.
arXiv Detail & Related papers (2023-06-15T17:55:05Z) - LifeLonger: A Benchmark for Continual Disease Classification [59.13735398630546]
We introduce LifeLonger, a benchmark for continual disease classification on the MedMNIST collection.
Task and class incremental learning of diseases address the issue of classifying new samples without re-training the models from scratch.
Cross-domain incremental learning addresses the issue of dealing with datasets originating from different institutions while retaining the previously obtained knowledge.
arXiv Detail & Related papers (2022-04-12T12:25:05Z) - Pre-training transformer-based framework on large-scale pediatric claims
data for downstream population-specific tasks [3.1580072841682734]
This study presents the Claim Pre-Training (Claim-PT) framework, a generic pre-training model that first trains on the entire pediatric claims dataset.
The effective knowledge transfer is completed through the task-aware fine-tuning stage.
We conducted experiments on a real-world claims dataset with more than one million patient records.
arXiv Detail & Related papers (2021-06-24T15:25:41Z) - Self-Supervised Graph Learning with Hyperbolic Embedding for Temporal
Health Event Prediction [13.24834156675212]
We propose a hyperbolic embedding method with information flow to pre-train medical code representations in a hierarchical structure.
We incorporate these pre-trained representations into a graph neural network to detect disease complications.
We present a new hierarchy-enhanced historical prediction proxy task in our self-supervised learning framework to fully utilize EHR data.
arXiv Detail & Related papers (2021-06-09T00:42:44Z) - Towards Robust Partially Supervised Multi-Structure Medical Image
Segmentation on Small-Scale Data [123.03252888189546]
We propose Vicinal Labels Under Uncertainty (VLUU) to bridge the methodological gaps in partially supervised learning (PSL) under data scarcity.
Motivated by multi-task learning and vicinal risk minimization, VLUU transforms the partially supervised problem into a fully supervised problem by generating vicinal labels.
Our research suggests a new research direction in label-efficient deep learning with partial supervision.
arXiv Detail & Related papers (2020-11-28T16:31:00Z) - Select-ProtoNet: Learning to Select for Few-Shot Disease Subtype
Prediction [55.94378672172967]
We focus on few-shot disease subtype prediction problem, identifying subgroups of similar patients.
We introduce meta learning techniques to develop a new model, which can extract the common experience or knowledge from interrelated clinical tasks.
Our new model is built upon a carefully designed meta-learner, called Prototypical Network, that is a simple yet effective meta learning machine for few-shot image classification.
arXiv Detail & Related papers (2020-09-02T02:50:30Z) - Uncovering the structure of clinical EEG signals with self-supervised
learning [64.4754948595556]
Supervised learning paradigms are often limited by the amount of labeled data that is available.
This phenomenon is particularly problematic in clinically-relevant data, such as electroencephalography (EEG)
By extracting information from unlabeled data, it might be possible to reach competitive performance with deep neural networks.
arXiv Detail & Related papers (2020-07-31T14:34:47Z) - Instance-aware Self-supervised Learning for Nuclei Segmentation [47.07869311690419]
We propose a novel self-supervised learning framework to exploit the capacity of convolutional neural networks (CNNs) on the nuclei instance segmentation task.
The proposed approach involves two sub-tasks, which enable neural networks to implicitly leverage the prior-knowledge of nuclei size and quantity.
Experimental results on the publicly available MoNuSeg dataset show that the proposed self-supervised learning approach can remarkably boost the segmentation accuracy of nuclei instance.
arXiv Detail & Related papers (2020-07-22T03:37:14Z) - Self-Training with Improved Regularization for Sample-Efficient Chest
X-Ray Classification [80.00316465793702]
We present a deep learning framework that enables robust modeling in challenging scenarios.
Our results show that using 85% lesser labeled data, we can build predictive models that match the performance of classifiers trained in a large-scale data setting.
arXiv Detail & Related papers (2020-05-03T02:36:00Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.