論文の概要: Functional requirements to mitigate the Risk of Harm to Patients from
Artificial Intelligence in Healthcare
- arxiv url: http://arxiv.org/abs/2309.10424v1
- Date: Tue, 19 Sep 2023 08:37:22 GMT
- ステータス: 処理完了
- システム内更新日: 2023-09-20 15:33:49.514296
- Title: Functional requirements to mitigate the Risk of Harm to Patients from
Artificial Intelligence in Healthcare
- Title(参考訳): 医療における人工知能患者に対するハームのリスク軽減のための機能要件
- Authors: Juan M. Garc\'ia-G\'omez, Vicent Blanes-Selva, Jos\'e Carlos de
Bartolom\'e Cenzano, Jaime Cebolla-Cornejo and Ascensi\'on
Do\~nate-Mart\'inez
- Abstract要約: 本研究は、医療目的に関連するリスクを軽減するために、AIシステムが実装可能な14の機能要件を提案する。
ここでの私たちの意図は、将来のEU規制フレームワークに準拠した患者に、継続的なパフォーマンスとAIシステムの使用を保証するために、技術的なソリューションの特定のハイレベルな仕様を提供することです。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: The Directorate General for Parliamentary Research Services of the European
Parliament has prepared a report to the Members of the European Parliament
where they enumerate seven main risks of Artificial Intelligence (AI) in
medicine and healthcare: patient harm due to AI errors, misuse of medical AI
tools, bias in AI and the perpetuation of existing inequities, lack of
transparency, privacy and security issues, gaps in accountability, and
obstacles in implementation.
In this study, we propose fourteen functional requirements that AI systems
may implement to reduce the risks associated with their medical purpose: AI
passport, User management, Regulation check, Academic use only disclaimer, data
quality assessment, Clinicians double check, Continuous performance evaluation,
Audit trail, Continuous usability test, Review of retrospective/simulated
cases, Bias check, eXplainable AI, Encryption and use of field-tested
libraries, and Semantic interoperability.
Our intention here is to provide specific high-level specifications of
technical solutions to ensure continuous good performance and use of AI systems
to benefit patients in compliance with the future EU regulatory framework.
- Abstract(参考訳): 欧州議会の議会調査サービス長官は欧州議会に報告書を作成し、医療と医療における人工知能(AI)の主なリスク7つを列挙した。AIエラーによる患者被害、医療AIツールの誤用、AIのバイアス、既存の不平等の永続性、透明性の欠如、プライバシーとセキュリティの問題、説明責任の欠如、実装上の障害である。
本稿では,AIシステムが医療目的に関連するリスクを軽減するために実施する機能要件として,AIパスポート,ユーザ管理,レギュレーションチェック,アカデミック使用のみの廃止,データ品質評価,臨床医のダブルチェック,継続的パフォーマンス評価,監査トレイル,継続的ユーザビリティテスト,レトロスペクティブ/シミュレーションケースのレビュー,バイアスチェック,eXplainable AI,暗号化とフィールドテストライブラリの使用,セマンティック相互運用性を提案する。
ここでの私たちの意図は、将来のEU規制フレームワークに準拠した患者に、継続的なパフォーマンスとAIシステムの使用を保証するために、技術的なソリューションの特定のハイレベルな仕様を提供することです。
関連論文リスト
- Towards Privacy-aware Mental Health AI Models: Advances, Challenges, and Opportunities [61.633126163190724]
精神病は、社会的、個人的コストがかなり高い広範囲で不安定な状態である。
近年の人工知能(AI)の進歩は、うつ病、不安障害、双極性障害、統合失調症、外傷後ストレス障害などの病態を認識し、対処するための大きな可能性を秘めている。
データセットやトレーニング済みモデルからの機密データ漏洩のリスクを含むプライバシー上の懸念は、これらのAIシステムを実際の臨床環境にデプロイする上で、依然として重要な障壁である。
論文 参考訳(メタデータ) (2025-02-01T15:10:02Z) - Artificial Intelligence-Driven Clinical Decision Support Systems [5.010570270212569]
この章は、医療で信頼できるAIシステムを作るには、公平さ、説明可能性、プライバシーを慎重に考慮する必要があることを強調している。
AIによる公平な医療提供を保証するという課題は強調され、臨床予測モデルのバイアスを特定し緩和する方法が議論されている。
この議論は、ディープラーニングモデルのデータ漏洩からモデル説明に対する高度な攻撃に至るまで、医療AIシステムのプライバシ脆弱性の分析に進展している。
論文 参考訳(メタデータ) (2025-01-16T16:17:39Z) - Implications of Artificial Intelligence on Health Data Privacy and Confidentiality [0.0]
医療における人工知能の急速な統合は、医療診断、パーソナライズされた医療、運用効率に革命をもたらしている。
しかし、患者のデータのプライバシ、倫理的考慮、規制遵守に関する重大な問題が発生する。
本稿では、医療におけるAIの二重効果について検討し、その変革の可能性と、敏感な健康情報を保護するための重要な必要性を強調した。
論文 参考訳(メタデータ) (2025-01-03T05:17:23Z) - Ethical Challenges and Evolving Strategies in the Integration of Artificial Intelligence into Clinical Practice [1.0301404234578682]
我々は、正義と公正、透明性、患者の同意と機密性、説明責任、患者中心で公平なケアの5つの重要な倫理的関心事に焦点を当てる。
この論文は、患者の信頼を維持する上でのバイアス、透明性の欠如、そして課題が、医療におけるAIアプリケーションの有効性と公正性を損なう可能性があるかを考察する。
論文 参考訳(メタデータ) (2024-11-18T00:52:22Z) - AI-Driven Healthcare: A Survey on Ensuring Fairness and Mitigating Bias [2.398440840890111]
AIアプリケーションは、診断精度、治療のパーソナライゼーション、患者の結果予測を大幅に改善した。
これらの進歩は、実質的な倫理的・公正性の課題ももたらした。
これらのバイアスは、医療提供の格差をもたらし、異なる人口集団の診断精度と治療結果に影響を与える可能性がある。
論文 参考訳(メタデータ) (2024-07-29T02:39:17Z) - TrialBench: Multi-Modal Artificial Intelligence-Ready Clinical Trial Datasets [57.067409211231244]
本稿では,マルチモーダルデータ(例えば,薬物分子,疾患コード,テキスト,分類・数値的特徴)と臨床治験設計における8つの重要な予測課題をカバーするAIreadyデータセットを精巧にキュレートした。
データセットのユーザビリティと信頼性を確保するため、各タスクに基本的な検証方法を提供する。
このようなオープンアクセスデータセットが利用可能になることは、臨床試験設計のための高度なAIアプローチの開発を促進することを期待する。
論文 参考訳(メタデータ) (2024-06-30T09:13:10Z) - Testing autonomous vehicles and AI: perspectives and challenges from cybersecurity, transparency, robustness and fairness [53.91018508439669]
この研究は、人工知能を自律走行車(AV)に統合する複雑さを探求する
AIコンポーネントがもたらした課題と、テスト手順への影響を調べます。
本稿は、重要な課題を特定し、AV技術におけるAIの研究・開発に向けた今後の方向性を提案する。
論文 参考訳(メタデータ) (2024-02-21T08:29:42Z) - RAISE -- Radiology AI Safety, an End-to-end lifecycle approach [5.829180249228172]
放射線学へのAIの統合は、臨床ケアの供給と効率を改善する機会をもたらす。
モデルが安全性、有効性、有効性の最高基準を満たすことに注力すべきである。
ここで提示されるロードマップは、放射線学におけるデプロイ可能で信頼性があり、安全なAIの達成を早めることを目的としている。
論文 参考訳(メタデータ) (2023-11-24T15:59:14Z) - The Role of AI in Drug Discovery: Challenges, Opportunities, and
Strategies [97.5153823429076]
この分野でのAIのメリット、課題、欠点についてレビューする。
データ拡張、説明可能なAIの使用、従来の実験手法とAIの統合についても論じている。
論文 参考訳(メタデータ) (2022-12-08T23:23:39Z) - An interdisciplinary conceptual study of Artificial Intelligence (AI)
for helping benefit-risk assessment practices: Towards a comprehensive
qualification matrix of AI programs and devices (pre-print 2020) [55.41644538483948]
本稿では,インテリジェンスの概念に対処するさまざまな分野の既存の概念を包括的に分析する。
目的は、AIシステムを評価するための共有概念や相違点を特定することである。
論文 参考訳(メタデータ) (2021-05-07T12:01:31Z) - Toward Trustworthy AI Development: Mechanisms for Supporting Verifiable
Claims [59.64274607533249]
AI開発者は、責任を負うことのできる検証可能な主張をする必要がある。
このレポートは、さまざまな利害関係者がAIシステムに関するクレームの妥当性を改善するための様々なステップを示唆している。
我々は、この目的のための10のメカニズム、すなわち、組織、ソフトウェア、ハードウェアを分析し、それらのメカニズムの実装、探索、改善を目的とした推奨を行う。
論文 参考訳(メタデータ) (2020-04-15T17:15:35Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。