Universal KPZ scaling in noisy hybrid quantum circuits
- URL: http://arxiv.org/abs/2212.03901v2
- Date: Fri, 9 Dec 2022 07:30:02 GMT
- Title: Universal KPZ scaling in noisy hybrid quantum circuits
- Authors: Shuo Liu, Ming-Rui Li, Shi-Xin Zhang, Shao-Kai Jian, Hong Yao
- Abstract summary: Measurement-induced phase transitions (MIPT) have attracted increasing attention due to the rich phenomenology of entanglement structures.
In this Letter, we investigate the effect of quantum noise modeled by reset quantum channel acting on each site with probability $q$ on MIPT.
- Score: 2.103498641058344
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Measurement-induced phase transitions (MIPT) have attracted increasing
attention due to the rich phenomenology of entanglement structures and their
relation with quantum information processing. Since physical systems are
unavoidably coupled to environment, quantum noise needs be considered in
analyzing a system with MIPT, which may qualitatively modify or even destroy
certain entanglement structure of the system. In this Letter, we investigate
the effect of quantum noise modeled by reset quantum channel acting on each
site with probability $q$ on MIPT. Based on the numerical results from the
Clifford circuits, we show that the quantum noise can qualitatively change the
entanglement properties - the entanglement obeys ``area law'' instead of
``volume law'' with projective measurement rate $p<p_{c}$. In the quantum noise
induced ``area law'' phase, the entanglement exhibits a novel $q^{-1/3}$
power-law scaling. Using an analytic mapping of the quantum model to a
classical statistical model, we further show that the ``area law'' entanglement
is the consequence of the noise-driven symmetry-breaking field and the
$q^{-1/3}$ scaling can be understood as the result of Kardar-Parisi-Zhang (KPZ)
fluctuations of the directed polymer with an effective length scale
$L_{\rm{eff}} \sim q^{-1}$ in a random environment.
Related papers
- Lindblad-like quantum tomography for non-Markovian quantum dynamical maps [46.350147604946095]
We introduce Lindblad-like quantum tomography (L$ell$QT) as a quantum characterization technique of time-correlated noise in quantum information processors.
We discuss L$ell$QT for the dephasing dynamics of single qubits in detail, which allows for a neat understanding of the importance of including multiple snapshots of the quantum evolution in the likelihood function.
arXiv Detail & Related papers (2024-03-28T19:29:12Z) - Effect of the readout efficiency of quantum measurement on the system entanglement [44.99833362998488]
We quantify the entanglement for a particle on a 1d quantum random walk under inefficient monitoring.
We find that the system's maximal mean entanglement at the measurement-induced quantum-to-classical crossover is in different ways by the measurement strength and inefficiency.
arXiv Detail & Related papers (2024-02-29T18:10:05Z) - Noise-induced phase transitions in hybrid quantum circuits [3.625262223613696]
In this work, we investigate the effects of quantum noises with size-dependent probabilities $q=p/Lalpha$ where $alpha$ represents the scaling exponent.
We have identified a noise-induced entanglement phase transition from a volume law to a power (area) law in the presence (absence) of measurements.
This unified picture further deepens the understanding of the connection between entanglement behavior and the capacity of information protection.
arXiv Detail & Related papers (2024-01-30T00:03:56Z) - Entanglement Structure and Information Protection in Noisy Hybrid Quantum Circuits [3.326868738829707]
This Letter contributes to a deeper understanding of the interplay between quantum noises and measurement-induced phase transition.
It also provides a new perspective to understand the effects of Markovian and non-Markovian noises on quantum computation.
arXiv Detail & Related papers (2024-01-03T07:54:51Z) - Universality of critical dynamics with finite entanglement [68.8204255655161]
We study how low-energy dynamics of quantum systems near criticality are modified by finite entanglement.
Our result establishes the precise role played by entanglement in time-dependent critical phenomena.
arXiv Detail & Related papers (2023-01-23T19:23:54Z) - Probing finite-temperature observables in quantum simulators of spin
systems with short-time dynamics [62.997667081978825]
We show how finite-temperature observables can be obtained with an algorithm motivated from the Jarzynski equality.
We show that a finite temperature phase transition in the long-range transverse field Ising model can be characterized in trapped ion quantum simulators.
arXiv Detail & Related papers (2022-06-03T18:00:02Z) - Entanglement entropy scaling of noisy random quantum circuits in two
dimensions [8.501065978448919]
noisy quantum devices without error correction can provide quantum advantage over classical computers.
In this work, the random quantum circuits are simulated with depolarizing noise on experiment relevant two-dimensional architecture.
arXiv Detail & Related papers (2022-05-27T14:22:28Z) - Noisy induced entanglement transition in one-dimensional random quantum
circuits [8.424620634789127]
We consider a one-dimensional quantum circuit with noisy Haar-random unitary gates.
It is shown that the entanglement evolution of the random quantum circuits is properly characterized by the logarithmic entanglement negativity.
arXiv Detail & Related papers (2022-03-15T11:15:11Z) - Measurement-induced entanglement transitions in many-body localized
systems [0.0]
We investigate measurement-induced entanglement transitions in a system where the underlying unitary dynamics are many-body localized (MBL)
This work further demonstrates how the nature of the measurement-induced entanglement transition depends on the scrambling nature of the underlying unitary dynamics.
This leads to further questions on the control and simulation of entangled quantum states by measurements in open quantum systems.
arXiv Detail & Related papers (2020-05-27T19:26:12Z) - Quantum Statistical Complexity Measure as a Signalling of Correlation
Transitions [55.41644538483948]
We introduce a quantum version for the statistical complexity measure, in the context of quantum information theory, and use it as a signalling function of quantum order-disorder transitions.
We apply our measure to two exactly solvable Hamiltonian models, namely: the $1D$-Quantum Ising Model and the Heisenberg XXZ spin-$1/2$ chain.
We also compute this measure for one-qubit and two-qubit reduced states for the considered models, and analyse its behaviour across its quantum phase transitions for finite system sizes as well as in the thermodynamic limit by using Bethe ansatz.
arXiv Detail & Related papers (2020-02-05T00:45:21Z) - Probing the Universality of Topological Defect Formation in a Quantum
Annealer: Kibble-Zurek Mechanism and Beyond [46.39654665163597]
We report on experimental tests of topological defect formation via the one-dimensional transverse-field Ising model.
We find that the quantum simulator results can indeed be explained by the KZM for open-system quantum dynamics with phase-flip errors.
This implies that the theoretical predictions of the generalized KZM theory, which assumes isolation from the environment, applies beyond its original scope to an open system.
arXiv Detail & Related papers (2020-01-31T02:55:35Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.