論文の概要: From Classification to Segmentation with Explainable AI: A Study on
Crack Detection and Growth Monitoring
- arxiv url: http://arxiv.org/abs/2309.11267v1
- Date: Wed, 20 Sep 2023 12:50:52 GMT
- ステータス: 処理完了
- システム内更新日: 2023-09-21 16:22:16.704258
- Title: From Classification to Segmentation with Explainable AI: A Study on
Crack Detection and Growth Monitoring
- Title(参考訳): 説明可能なAIによる分類からセグメンテーションへ:き裂検出と成長モニタリングに関する研究
- Authors: Florent Forest, Hugo Porta, Devis Tuia, Olga Fink
- Abstract要約: インフラの表面ひび割れのモニタリングは、構造的健康モニタリングに不可欠である。
機械学習アプローチはその効果を証明しているが、典型的には教師付きトレーニングには大きな注釈付きデータセットが必要である。
このコストを軽減するために、説明可能な人工知能(XAI)を利用して分類器の説明からセグメンテーションを導き、画像レベルの監督が弱いだけを必要とする。
- 参考スコア(独自算出の注目度): 9.370475744752953
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Monitoring surface cracks in infrastructure is crucial for structural health
monitoring. Automatic visual inspection offers an effective solution,
especially in hard-to-reach areas. Machine learning approaches have proven
their effectiveness but typically require large annotated datasets for
supervised training. Once a crack is detected, monitoring its severity often
demands precise segmentation of the damage. However, pixel-level annotation of
images for segmentation is labor-intensive. To mitigate this cost, one can
leverage explainable artificial intelligence (XAI) to derive segmentations from
the explanations of a classifier, requiring only weak image-level supervision.
This paper proposes applying this methodology to segment and monitor surface
cracks. We evaluate the performance of various XAI methods and examine how this
approach facilitates severity quantification and growth monitoring. Results
reveal that while the resulting segmentation masks may exhibit lower quality
than those produced by supervised methods, they remain meaningful and enable
severity monitoring, thus reducing substantial labeling costs.
- Abstract(参考訳): インフラの表面ひび割れのモニタリングは、構造的健康モニタリングに不可欠である。
自動視覚検査は、特に難解な領域において、効果的な解決策を提供する。
機械学習アプローチはその効果を証明しているが、典型的には教師付きトレーニングには大きな注釈付きデータセットが必要である。
亀裂が検出されると、その重大度を監視するには、しばしば損傷の正確な区分を必要とする。
しかし、セグメンテーションのための画像のピクセルレベルのアノテーションは労働集約的です。
このコストを軽減するために、説明可能な人工知能(XAI)を利用して分類器の説明からセグメンテーションを導き、画像レベルの監督が弱いだけを必要とする。
本稿では,この手法を表面ひび割れの分断とモニタリングに応用することを提案する。
各種XAI法の性能評価を行い,本手法が重度定量化と成長モニタリングをいかに促進するかを検討する。
その結果, 得られたセグメンテーションマスクは, 教師付き手法よりも品質が低いが, 意味を保ち, 重度モニタリングが可能であり, 実質的なラベリングコストを低減できることがわかった。
関連論文リスト
- SINDER: Repairing the Singular Defects of DINOv2 [61.98878352956125]
大規模なデータセットでトレーニングされたビジョントランスフォーマーモデルは、抽出したパッチトークンにアーティファクトを表示することが多い。
本稿では,小さなデータセットのみを用いて構造欠陥を補正するスムーズなスムーズな正規化を提案する。
論文 参考訳(メタデータ) (2024-07-23T20:34:23Z) - Improving Vision Anomaly Detection with the Guidance of Language
Modality [64.53005837237754]
本稿では,マルチモーダルの観点から視覚モダリティの課題に取り組む。
本稿では,冗長な情報問題とスパース空間問題に対処するために,クロスモーダルガイダンス(CMG)を提案する。
視覚異常検出のためのよりコンパクトな潜在空間を学習するために、CMLEは言語モダリティから相関構造行列を学習する。
論文 参考訳(メタデータ) (2023-10-04T13:44:56Z) - Cross-supervised Dual Classifiers for Semi-supervised Medical Image
Segmentation [10.18427897663732]
半教師付き医用画像分割は、大規模医用画像解析に有望な解決策を提供する。
本稿では、二重分類器(DC-Net)に基づくクロス教師あり学習フレームワークを提案する。
LAとPancreas-CTデータセットの実験は、DC-Netが半教師付きセグメンテーションの他の最先端手法よりも優れていることを示している。
論文 参考訳(メタデータ) (2023-05-25T16:23:39Z) - A Survey on Label-efficient Deep Segmentation: Bridging the Gap between
Weak Supervision and Dense Prediction [115.9169213834476]
本稿では,ラベル効率の高いセグメンテーション手法について概説する。
まず,様々な種類の弱いラベルによって提供される監督に従って,これらの手法を整理する分類法を開発する。
次に,既存のラベル効率のセグメンテーション手法を統一的な視点から要約する。
論文 参考訳(メタデータ) (2022-07-04T06:21:01Z) - What's Cracking? A Review and Analysis of Deep Learning Methods for
Structural Crack Segmentation, Detection and Quantification [0.9449650062296824]
本レビューは,ディープラーニングを利用したひび割れ解析アルゴリズムの分野における論文の概要を研究者に提供することを目的としている。
コンピュータビジョンアルゴリズムを適用して、構造的な健康モニタリング環境でひび割れを表面化することで解決される様々なタスクを概説する。
レビューではまた、クラックに使用される一般的なデータセットと、それらのアルゴリズムのパフォーマンスを評価するために使用されるメトリクスを強調している。
論文 参考訳(メタデータ) (2022-02-08T08:22:26Z) - Towards to Robust and Generalized Medical Image Segmentation Framework [17.24628770042803]
本稿では,ロバストな一般化セグメンテーションのための新しい2段階フレームワークを提案する。
特に、教師なしTile-wise AutoEncoder(T-AE)事前学習アーキテクチャは、意味のある表現を学ぶために作成される。
複数の胸部X線データセットに対する肺分画実験を行った。
論文 参考訳(メタデータ) (2021-08-09T05:58:49Z) - Exploring Robustness of Unsupervised Domain Adaptation in Semantic
Segmentation [74.05906222376608]
クリーンな画像とそれらの逆の例との一致を、出力空間における対照的な損失によって最大化する、逆向きの自己スーパービジョンUDA(ASSUDA)を提案する。
i) セマンティックセグメンテーションにおけるUDA手法のロバスト性は未解明のままであり, (ii) 一般的に自己スーパービジョン(回転やジグソーなど) は分類や認識などのイメージタスクに有効であるが, セグメンテーションタスクの識別的表現を学習する重要な監視信号の提供には失敗している。
論文 参考訳(メタデータ) (2021-05-23T01:50:44Z) - Every Annotation Counts: Multi-label Deep Supervision for Medical Image
Segmentation [85.0078917060652]
この障壁を克服する半弱教師付きセグメンテーションアルゴリズムを提案する。
このアプローチは,深層指導と生徒・教師モデルの新しい定式化に基づいている。
我々の新しいセグメンテーションのトレーニング体制は、完全にラベル付けされ、バウンディングボックスでマークされた画像、単にグローバルラベル、あるいは全くないイメージを柔軟に活用することで、高価なラベルの要件を94.22%削減することができる。
論文 参考訳(メタデータ) (2021-04-27T14:51:19Z) - Efficient Model Monitoring for Quality Control in Cardiac Image
Segmentation [3.2212186424911073]
基礎的真理がない状態での心臓セグメンテーションモデルのパフォーマンスを監視するための新しい学習フレームワークを提示する。
本稿では,グローバルスコアと画素ワイズマップという2種類の品質指標を提案する。
その結果,我々のフレームワークは正確,高速,スケーラブルであり,臨床と大規模集団研究における品質管理モニタリングに有効な選択肢であることを確認した。
論文 参考訳(メタデータ) (2021-04-12T14:58:58Z) - Towards Robust Partially Supervised Multi-Structure Medical Image
Segmentation on Small-Scale Data [123.03252888189546]
データ不足下における部分教師付き学習(PSL)における方法論的ギャップを埋めるために,不確実性下でのビシナルラベル(VLUU)を提案する。
マルチタスク学習とヴィジナルリスク最小化によって動機づけられたVLUUは、ビジナルラベルを生成することによって、部分的に教師付き問題を完全な教師付き問題に変換する。
本研究は,ラベル効率の高い深層学習における新たな研究の方向性を示唆するものである。
論文 参考訳(メタデータ) (2020-11-28T16:31:00Z) - Manifold-driven Attention Maps for Weakly Supervised Segmentation [9.289524646688244]
本稿では,視覚的に有意な領域を強化するために,多様体駆動型注意ネットワークを提案する。
提案手法は,余分な計算を必要とせずに,推論中により優れた注意マップを生成できる。
論文 参考訳(メタデータ) (2020-04-07T00:03:28Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。