Rethinking Sensors Modeling: Hierarchical Information Enhanced Traffic
Forecasting
- URL: http://arxiv.org/abs/2309.11284v1
- Date: Wed, 20 Sep 2023 13:08:34 GMT
- Title: Rethinking Sensors Modeling: Hierarchical Information Enhanced Traffic
Forecasting
- Authors: Qian Ma, Zijian Zhang, Xiangyu Zhao, Haoliang Li, Hongwei Zhao, Yiqi
Wang, Zitao Liu, and Wanyu Wang
- Abstract summary: We argue to rethink the sensor's dependency modeling from two hierarchies: regional and global.
We generate representative and common-temporal patterns as global nodes to reflect a global dependency between sensors.
In pursuit of the generality of reality of node representations, we incorporate a Meta GCN to propagate and global nodes in the physical data space.
- Score: 47.1051445072085
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: With the acceleration of urbanization, traffic forecasting has become an
essential role in smart city construction. In the context of spatio-temporal
prediction, the key lies in how to model the dependencies of sensors. However,
existing works basically only consider the micro relationships between sensors,
where the sensors are treated equally, and their macroscopic dependencies are
neglected. In this paper, we argue to rethink the sensor's dependency modeling
from two hierarchies: regional and global perspectives. Particularly, we merge
original sensors with high intra-region correlation as a region node to
preserve the inter-region dependency. Then, we generate representative and
common spatio-temporal patterns as global nodes to reflect a global dependency
between sensors and provide auxiliary information for spatio-temporal
dependency learning. In pursuit of the generality and reality of node
representations, we incorporate a Meta GCN to calibrate the regional and global
nodes in the physical data space. Furthermore, we devise the cross-hierarchy
graph convolution to propagate information from different hierarchies. In a
nutshell, we propose a Hierarchical Information Enhanced Spatio-Temporal
prediction method, HIEST, to create and utilize the regional dependency and
common spatio-temporal patterns. Extensive experiments have verified the
leading performance of our HIEST against state-of-the-art baselines. We
publicize the code to ease reproducibility.
Related papers
- Graph Masked Autoencoder for Spatio-Temporal Graph Learning [38.085962443141206]
In urban sensing applications, effective-temporal prediction frameworks play a crucial role in traffic analysis, human mobility evaluations and crime prediction.
The presence of data noise and sparsity in spatial and temporal data presents significant challenges for existing neural network models in learning robust representations.
We propose a novel self-supervised learning paradigm for effective-temporal data augmentation.
arXiv Detail & Related papers (2024-10-14T07:33:33Z) - Temporal and Heterogeneous Graph Neural Network for Remaining Useful Life Prediction [27.521188262343596]
We introduce a novel model named Temporal and Heterogeneous Graph Neural Networks (THGNN)
THGNN aggregates historical data from neighboring nodes to accurately capture the temporal dynamics and spatial correlations within the stream of sensor data.
We have validated the effectiveness of our approach through comprehensive experiments.
arXiv Detail & Related papers (2024-05-07T14:08:57Z) - DynST: Dynamic Sparse Training for Resource-Constrained Spatio-Temporal
Forecasting [24.00162014044092]
Earth science systems rely heavily on the extensive deployment of sensors.
Traditional approaches to sensor deployment utilize specific algorithms to design and deploy sensors.
In this paper, we introduce for the first time the concept of dynamic sparse training and are committed to adaptively, dynamically filtering important sensor data.
arXiv Detail & Related papers (2024-03-05T12:31:24Z) - Adaptive Hierarchical SpatioTemporal Network for Traffic Forecasting [70.66710698485745]
We propose an Adaptive Hierarchical SpatioTemporal Network (AHSTN) to promote traffic forecasting.
AHSTN exploits the spatial hierarchy and modeling multi-scale spatial correlations.
Experiments on two real-world datasets show that AHSTN achieves better performance over several strong baselines.
arXiv Detail & Related papers (2023-06-15T14:50:27Z) - SARN: Structurally-Aware Recurrent Network for Spatio-Temporal Disaggregation [8.636014676778682]
Open data is frequently released spatially aggregated, usually to comply with privacy policies. But coarse, heterogeneous aggregations complicate coherent learning and integration for downstream AI/ML systems.
We propose an overarching model named Structurally-Aware Recurrent Network (SARN), which integrates structurally-aware spatial attention layers into the Gated Recurrent Unit (GRU) model.
For scenarios with limited historical training data, we show that a model pre-trained on one city variable can be fine-tuned for another city variable using only a few hundred samples.
arXiv Detail & Related papers (2023-06-09T21:01:29Z) - Adaptive Local-Component-aware Graph Convolutional Network for One-shot
Skeleton-based Action Recognition [54.23513799338309]
We present an Adaptive Local-Component-aware Graph Convolutional Network for skeleton-based action recognition.
Our method provides a stronger representation than the global embedding and helps our model reach state-of-the-art.
arXiv Detail & Related papers (2022-09-21T02:33:07Z) - Continuous-Time and Multi-Level Graph Representation Learning for
Origin-Destination Demand Prediction [52.0977259978343]
This paper proposes a Continuous-time and Multi-level dynamic graph representation learning method for Origin-Destination demand prediction (CMOD)
The state vectors keep historical transaction information and are continuously updated according to the most recently happened transactions.
Experiments are conducted on two real-world datasets from Beijing Subway and New York Taxi, and the results demonstrate the superiority of our model against the state-of-the-art approaches.
arXiv Detail & Related papers (2022-06-30T03:37:50Z) - Activation Regression for Continuous Domain Generalization with
Applications to Crop Classification [48.795866501365694]
Geographic variance in satellite imagery impacts the ability of machine learning models to generalise to new regions.
We model geographic generalisation in medium resolution Landsat-8 satellite imagery as a continuous domain adaptation problem.
We develop a dataset spatially distributed across the entire continental United States.
arXiv Detail & Related papers (2022-04-14T15:41:39Z) - DMGCRN: Dynamic Multi-Graph Convolution Recurrent Network for Traffic
Forecasting [7.232141271583618]
We propose a novel dynamic multi-graph convolution recurrent network (DMG) to tackle above issues.
We use the distance-based graph to capture spatial information from nodes are close in distance.
We also construct a novel latent graph which encoded the structure correlations among roads to capture spatial information from nodes are similar in structure.
arXiv Detail & Related papers (2021-12-04T06:51:55Z) - An Entropy-guided Reinforced Partial Convolutional Network for Zero-Shot
Learning [77.72330187258498]
We propose a novel Entropy-guided Reinforced Partial Convolutional Network (ERPCNet)
ERPCNet extracts and aggregates localities based on semantic relevance and visual correlations without human-annotated regions.
It not only discovers global-cooperative localities dynamically but also converges faster for policy gradient optimization.
arXiv Detail & Related papers (2021-11-03T11:13:13Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.