論文の概要: Gold-YOLO: Efficient Object Detector via Gather-and-Distribute Mechanism
- arxiv url: http://arxiv.org/abs/2309.11331v4
- Date: Mon, 16 Oct 2023 08:46:08 GMT
- ステータス: 処理完了
- システム内更新日: 2023-10-18 03:30:39.029629
- Title: Gold-YOLO: Efficient Object Detector via Gather-and-Distribute Mechanism
- Title(参考訳): 金ヨーロ:ゲザ・アンド・ディストビュート機構による効率的な物体検出装置
- Authors: Chengcheng Wang, Wei He, Ying Nie, Jianyuan Guo, Chuanjian Liu, Kai
Han, Yunhe Wang
- Abstract要約: Gold-YOLOと名付けられた新しい設計モデルは、マルチスケールの機能融合能力を向上する。
YOLOシリーズにMAEスタイルの事前トレーニングを初めて実装し、YOLOシリーズモデルが教師なし事前トレーニングの恩恵を受けることができるようにした。
- 参考スコア(独自算出の注目度): 40.31805155724484
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In the past years, YOLO-series models have emerged as the leading approaches
in the area of real-time object detection. Many studies pushed up the baseline
to a higher level by modifying the architecture, augmenting data and designing
new losses. However, we find previous models still suffer from information
fusion problem, although Feature Pyramid Network (FPN) and Path Aggregation
Network (PANet) have alleviated this. Therefore, this study provides an
advanced Gatherand-Distribute mechanism (GD) mechanism, which is realized with
convolution and self-attention operations. This new designed model named as
Gold-YOLO, which boosts the multi-scale feature fusion capabilities and
achieves an ideal balance between latency and accuracy across all model scales.
Additionally, we implement MAE-style pretraining in the YOLO-series for the
first time, allowing YOLOseries models could be to benefit from unsupervised
pretraining. Gold-YOLO-N attains an outstanding 39.9% AP on the COCO val2017
datasets and 1030 FPS on a T4 GPU, which outperforms the previous SOTA model
YOLOv6-3.0-N with similar FPS by +2.4%. The PyTorch code is available at
https://github.com/huawei-noah/Efficient-Computing/tree/master/Detection/Gold-YOLO,
and the MindSpore code is available at
https://gitee.com/mindspore/models/tree/master/research/cv/Gold_YOLO.
- Abstract(参考訳): 近年, リアルタイム物体検出の分野における主要なアプローチとして, YOLOシリーズモデルが登場している。
多くの研究が、アーキテクチャを変更し、データを増やし、新しい損失を設計することで、ベースラインをより高いレベルに押し上げた。
しかし,従来モデルでは,機能ピラミッドネットワーク (fpn) とパスアグリゲーションネットワーク (panet) がこれを緩和しているが,情報融合問題に苦しんでいる。
そこで本研究では,畳み込みと自己アテンション操作によって実現される高度な集合分散機構(gd)機構を提案する。
この新しい設計モデルはGold-YOLOと呼ばれ、マルチスケールの機能融合能力を高め、すべてのモデルスケールでレイテンシと精度の理想的なバランスを実現する。
さらに, YOLOシリーズにMAEスタイルの事前トレーニングを初めて実装し, YOLOシリーズモデルが教師なし事前トレーニングの恩恵を受けられるようにした。
Gold-YOLO-Nは、COCO val2017データセットで39.9%のAP、T4 GPUで1030 FPSを達成した。
PyTorchコードはhttps://github.com/huawei-noah/Efficient-Computing/tree/master/detection/Gold-YOLOで、MindSporeコードはhttps://gitee.com/mindspore/models/tree/master/research/cv/Gold_YOLOで入手できる。
関連論文リスト
- Quantizing YOLOv7: A Comprehensive Study [0.0]
本稿では,最先端のYOLOv7モデルの事前学習重みに対する様々な量子化スキームの有効性について検討する。
その結果、4ビット量子化と異なる粒度の組合せを組み合わせることで、均一な量子化と非一様量子化のための3.92倍と3.86倍のメモリ節約が得られることがわかった。
論文 参考訳(メタデータ) (2024-07-06T03:23:04Z) - YOLOv10: Real-Time End-to-End Object Detection [68.28699631793967]
リアルタイムオブジェクト検出の分野では,YOLOが主流のパラダイムとして浮上している。
非最大抑圧(NMS)による処理後ハマーによるYOLOのエンドツーエンドデプロイメントへの依存。
YOLOの総合的効率-精度駆動型モデル設計戦略を紹介する。
論文 参考訳(メタデータ) (2024-05-23T11:44:29Z) - YOLO-TLA: An Efficient and Lightweight Small Object Detection Model based on YOLOv5 [19.388112026410045]
YOLO-TLAは、YOLOv5上に構築された高度な物体検出モデルである。
まず、ネックネットワークピラミッドアーキテクチャにおいて、小さなオブジェクトに対する検出層を新たに導入する。
このモジュールはスライディングウィンドウの特徴抽出を使い、計算要求とパラメータ数の両方を効果的に最小化する。
論文 参考訳(メタデータ) (2024-02-22T05:55:17Z) - YOLO-MS: Rethinking Multi-Scale Representation Learning for Real-time
Object Detection [80.11152626362109]
YOLO-MSと呼ばれる効率的かつ高性能な物体検出器を提供する。
私たちは、他の大規模なデータセットに頼ることなく、MS COCOデータセット上でYOLO-MSをスクラッチからトレーニングします。
私たちの仕事は、他のYOLOモデルのプラグイン・アンド・プレイ・モジュールとしても使えます。
論文 参考訳(メタデータ) (2023-08-10T10:12:27Z) - YOLOBench: Benchmarking Efficient Object Detectors on Embedded Systems [0.0873811641236639]
4つの異なるデータセットと4つの異なる組込みハードウェアプラットフォーム上で、550以上のYOLOベースのオブジェクト検出モデルからなるベンチマークであるYOLOBenchを提案する。
我々は,これらの検出器と固定訓練環境との公正かつ制御された比較を行うことにより,様々なモデルスケールのYOLOベースの1段検出器の精度と遅延数を収集する。
我々は、YOLOBenchのニューラルネットワーク探索で使用されるトレーニング不要な精度推定器を評価し、最先端のゼロコスト精度推定器はMACカウントのような単純なベースラインよりも優れており、その一部は効果的に使用できることを示した。
論文 参考訳(メタデータ) (2023-07-26T01:51:10Z) - EdgeYOLO: An Edge-Real-Time Object Detector [69.41688769991482]
本稿では, 最先端のYOLOフレームワークをベースとした, 効率的で低複雑さかつアンカーフリーな物体検出器を提案する。
我々は,訓練中の過剰適合を効果的に抑制する拡張データ拡張法を開発し,小型物体の検出精度を向上させるためにハイブリッドランダム損失関数を設計する。
私たちのベースラインモデルは、MS 2017データセットで50.6%のAP50:95と69.8%のAP50、VisDrone 2019-DETデータセットで26.4%のAP50と44.8%のAP50に達し、エッジコンピューティングデバイスNvidia上でリアルタイム要求(FPS>=30)を満たす。
論文 参考訳(メタデータ) (2023-02-15T06:05:14Z) - DAMO-YOLO : A Report on Real-Time Object Detection Design [19.06518351354291]
本稿では,最新のYOLOシリーズよりも高速かつ高精度なオブジェクト検出手法であるDAMO-YOLOを提案する。
我々は最大エントロピーの原理で導かれるMAE-NASを用いて検出バックボーンを探索する。
「首と首のデザインでは、大首と小首の規則に従っている。」
論文 参考訳(メタデータ) (2022-11-23T17:59:12Z) - A lightweight and accurate YOLO-like network for small target detection
in Aerial Imagery [94.78943497436492]
小型ターゲット検出のためのシンプルで高速で効率的なネットワークであるYOLO-Sを提案する。
YOLO-SはDarknet20をベースとした小さな特徴抽出器と、バイパスと連結の両方を通じて接続をスキップする。
YOLO-Sはパラメータサイズが87%減少し、約半分のFLOPがYOLOv3となり、低消費電力の産業用アプリケーションに実用化された。
論文 参考訳(メタデータ) (2022-04-05T16:29:49Z) - Workshop on Autonomous Driving at CVPR 2021: Technical Report for
Streaming Perception Challenge [57.647371468876116]
本稿では,現実的な自律運転シナリオのためのリアルタイム2次元物体検出システムについて紹介する。
私たちの検出器は、YOLOXと呼ばれる新しい設計のYOLOモデルで構築されています。
Argoverse-HDデータセットでは,検出のみのトラック/トラックで2位を7.8/6.1上回る41.0ストリーミングAPを達成した。
論文 参考訳(メタデータ) (2021-07-27T06:36:06Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。