Federated Learning with Neural Graphical Models
- URL: http://arxiv.org/abs/2309.11680v3
- Date: Tue, 22 Oct 2024 03:46:41 GMT
- Title: Federated Learning with Neural Graphical Models
- Authors: Urszula Chajewska, Harsh Shrivastava,
- Abstract summary: Federated Learning (FL) addresses the need to create models based on proprietary data.
We develop a FL framework which maintains a global NGM model that learns the averaged information from the local NGM models.
We experimentally demonstrated the use of FedNGMs for extracting insights from CDC's Infant Mortality dataset.
- Score: 2.2721854258621064
- License:
- Abstract: Federated Learning (FL) addresses the need to create models based on proprietary data in such a way that multiple clients retain exclusive control over their data, while all benefit from improved model accuracy due to pooled resources. Recently proposed Neural Graphical Models (NGMs) are Probabilistic Graphical models that utilize the expressive power of neural networks to learn complex non-linear dependencies between the input features. They learn to capture the underlying data distribution and have efficient algorithms for inference and sampling. We develop a FL framework which maintains a global NGM model that learns the averaged information from the local NGM models while keeping the training data within the client's environment. Our design, FedNGMs, avoids the pitfalls and shortcomings of neuron matching frameworks like Federated Matched Averaging that suffers from model parameter explosion. Our global model size remains constant throughout the process. In the cases where clients have local variables that are not part of the combined global distribution, we propose a `Stitching' algorithm, which personalizes the global NGM models by merging the additional variables using the client's data. FedNGM is robust to data heterogeneity, large number of participants, and limited communication bandwidth. We experimentally demonstrated the use of FedNGMs for extracting insights from CDC's Infant Mortality dataset and discuss interesting future applications.
Related papers
- An Aggregation-Free Federated Learning for Tackling Data Heterogeneity [50.44021981013037]
Federated Learning (FL) relies on the effectiveness of utilizing knowledge from distributed datasets.
Traditional FL methods adopt an aggregate-then-adapt framework, where clients update local models based on a global model aggregated by the server from the previous training round.
We introduce FedAF, a novel aggregation-free FL algorithm.
arXiv Detail & Related papers (2024-04-29T05:55:23Z) - FLIGAN: Enhancing Federated Learning with Incomplete Data using GAN [1.5749416770494706]
Federated Learning (FL) provides a privacy-preserving mechanism for distributed training of machine learning models on networked devices.
We propose FLIGAN, a novel approach to address the issue of data incompleteness in FL.
Our methodology adheres to FL's privacy requirements by generating synthetic data in a federated manner without sharing the actual data in the process.
arXiv Detail & Related papers (2024-03-25T16:49:38Z) - Federated Learning with Projected Trajectory Regularization [65.6266768678291]
Federated learning enables joint training of machine learning models from distributed clients without sharing their local data.
One key challenge in federated learning is to handle non-identically distributed data across the clients.
We propose a novel federated learning framework with projected trajectory regularization (FedPTR) for tackling the data issue.
arXiv Detail & Related papers (2023-12-22T02:12:08Z) - TraceFL: Achieving Interpretability in Federated Learning via Neuron Provenance [8.18537013016659]
In Federated Learning, clients train models on local data and send updates to a central server, which aggregates them into a global model using a fusion algorithm.
This collaborative yet privacy-preserving training comes at a cost--FL developers face significant challenges in attributing global model predictions to specific clients.
We introduce TraceFL, a fine-grained neuron provenance capturing mechanism that identifies clients responsible for the global model's prediction by tracking the flow of information from individual clients to the global model.
arXiv Detail & Related papers (2023-12-21T07:48:54Z) - PFL-GAN: When Client Heterogeneity Meets Generative Models in
Personalized Federated Learning [55.930403371398114]
We propose a novel generative adversarial network (GAN) sharing and aggregation strategy for personalized learning (PFL)
PFL-GAN addresses the client heterogeneity in different scenarios. More specially, we first learn the similarity among clients and then develop an weighted collaborative data aggregation.
The empirical results through the rigorous experimentation on several well-known datasets demonstrate the effectiveness of PFL-GAN.
arXiv Detail & Related papers (2023-08-23T22:38:35Z) - Towards Understanding and Mitigating Dimensional Collapse in Heterogeneous Federated Learning [112.69497636932955]
Federated learning aims to train models across different clients without the sharing of data for privacy considerations.
We study how data heterogeneity affects the representations of the globally aggregated models.
We propose sc FedDecorr, a novel method that can effectively mitigate dimensional collapse in federated learning.
arXiv Detail & Related papers (2022-10-01T09:04:17Z) - FedDM: Iterative Distribution Matching for Communication-Efficient
Federated Learning [87.08902493524556]
Federated learning(FL) has recently attracted increasing attention from academia and industry.
We propose FedDM to build the global training objective from multiple local surrogate functions.
In detail, we construct synthetic sets of data on each client to locally match the loss landscape from original data.
arXiv Detail & Related papers (2022-07-20T04:55:18Z) - Fine-tuning Global Model via Data-Free Knowledge Distillation for
Non-IID Federated Learning [86.59588262014456]
Federated Learning (FL) is an emerging distributed learning paradigm under privacy constraint.
We propose a data-free knowledge distillation method to fine-tune the global model in the server (FedFTG)
Our FedFTG significantly outperforms the state-of-the-art (SOTA) FL algorithms and can serve as a strong plugin for enhancing FedAvg, FedProx, FedDyn, and SCAFFOLD.
arXiv Detail & Related papers (2022-03-17T11:18:17Z) - Gradient Masked Averaging for Federated Learning [24.687254139644736]
Federated learning allows a large number of clients with heterogeneous data to coordinate learning of a unified global model.
Standard FL algorithms involve averaging of model parameters or gradient updates to approximate the global model at the server.
We propose a gradient masked averaging approach for FL as an alternative to the standard averaging of client updates.
arXiv Detail & Related papers (2022-01-28T08:42:43Z) - A Personalized Federated Learning Algorithm: an Application in Anomaly
Detection [0.6700873164609007]
Federated Learning (FL) has recently emerged as a promising method to overcome data privacy and transmission issues.
In FL, datasets collected from different devices or sensors are used to train local models (clients) each of which shares its learning with a centralized model (server)
This paper proposes a novel Personalized FedAvg (PC-FedAvg) which aims to control weights communication and aggregation augmented with a tailored learning algorithm to personalize the resulting models at each client.
arXiv Detail & Related papers (2021-11-04T04:57:11Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.