論文の概要: Model-based clustering using non-parametric Hidden Markov Models
- arxiv url: http://arxiv.org/abs/2309.12238v2
- Date: Mon, 25 Sep 2023 13:12:43 GMT
- ステータス: 処理完了
- システム内更新日: 2023-09-26 10:48:25.307724
- Title: Model-based clustering using non-parametric Hidden Markov Models
- Title(参考訳): 非パラメトリック隠れマルコフモデルを用いたモデルベースクラスタリング
- Authors: Elisabeth Gassiat, Ibrahim Kaddouri, Zacharie Naulet
- Abstract要約: 本研究では,HMMを用いたクラスタリングのベイズリスクについて検討し,関連するクラスタリング手順を提案する。
結果は、観察が連続的にクラスタ化されるオンライン環境では、引き続き有効であることが示されている。
- 参考スコア(独自算出の注目度): 5.314335654467143
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Thanks to their dependency structure, non-parametric Hidden Markov Models
(HMMs) are able to handle model-based clustering without specifying group
distributions. The aim of this work is to study the Bayes risk of clustering
when using HMMs and to propose associated clustering procedures. We first give
a result linking the Bayes risk of classification and the Bayes risk of
clustering, which we use to identify the key quantity determining the
difficulty of the clustering task. We also give a proof of this result in the
i.i.d. framework, which might be of independent interest. Then we study the
excess risk of the plugin classifier. All these results are shown to remain
valid in the online setting where observations are clustered sequentially.
Simulations illustrate our findings.
- Abstract(参考訳): 依存構造のおかげで、非パラメトリックハイデンマルコフモデル(HMM)は群分布を指定せずにモデルベースのクラスタリングを処理できる。
本研究の目的は,HMMを用いたクラスタリングのベイズリスクを調査し,関連するクラスタリング手順を提案することである。
まず,分類のベイズリスクとクラスタリングのベイズリスクを結びつけ,クラスタリングタスクの難易度を決定するキー量を特定する。
我々はまた、この結果が独立した関心を持つかもしれないi.i.d.フレームワークで証明する。
次に,プラグイン分類器の過度なリスクについて検討する。
これらの結果は、観測が順次クラスタ化されるオンライン環境では有効であることが示されている。
シミュレーションは我々の発見を示しています。
関連論文リスト
- Precise analysis of ridge interpolators under heavy correlations -- a Random Duality Theory view [0.0]
EmphRandom Duality Theory (RDT) を用いて, 関心量の最適化に係わるすべての推定器の正確なクローズドな形状のキャラクタリゼーションが得られることを示す。
論文 参考訳(メタデータ) (2024-06-13T14:56:52Z) - Capsa: A Unified Framework for Quantifying Risk in Deep Neural Networks [142.67349734180445]
ディープニューラルネットワークにリスク認識を提供する既存のアルゴリズムは複雑でアドホックである。
ここでは、リスク認識でモデルを拡張するためのフレームワークであるcapsaを紹介します。
論文 参考訳(メタデータ) (2023-08-01T02:07:47Z) - Soft Robust MDPs and Risk-Sensitive MDPs: Equivalence, Policy Gradient, and Sample Complexity [7.57543767554282]
本稿では,リスクに敏感なMDPの新たな定式化について紹介し,従来のマルコフリスク尺度と若干異なる方法でリスクを評価する。
両問題に対してポリシー勾配定理を導出し、厳密なポリシー勾配法の勾配支配と大域収束を証明した。
また、サンプルベースのオフライン学習アルゴリズム、すなわちロバスト適応Z反復(RFZI)を提案する。
論文 参考訳(メタデータ) (2023-06-20T15:51:25Z) - Regret Bounds for Risk-sensitive Reinforcement Learning with Lipschitz
Dynamic Risk Measures [23.46659319363579]
EmphLipschitz動的リスク尺度に適用した2つのモデルベースアルゴリズムを提案する。
特に、私たちの上限は、アクションの数とエピソード数に最適な依存を示す。
論文 参考訳(メタデータ) (2023-06-04T16:24:19Z) - On (assessing) the fairness of risk score models [2.0646127669654826]
リスクモデルは、ユーザに対して潜在的な結果について不確実性を伝えるという事実など、さまざまな理由から関心を集めている。
リスクスコアフェアネスの鍵となるデシダータムとして,異なるグループに類似した価値を提供する。
本稿では,従来提案されていた基準値よりも試料径バイアスが少ない新しい校正誤差指標を提案する。
論文 参考訳(メタデータ) (2023-02-17T12:45:51Z) - Mitigating multiple descents: A model-agnostic framework for risk
monotonization [84.6382406922369]
クロスバリデーションに基づくリスクモノトナイズのための一般的なフレームワークを開発する。
本稿では,データ駆動方式であるゼロステップとワンステップの2つの手法を提案する。
論文 参考訳(メタデータ) (2022-05-25T17:41:40Z) - A Survey of Risk-Aware Multi-Armed Bandits [84.67376599822569]
我々は、様々な利害リスク対策をレビューし、その特性についてコメントする。
我々は,探索と探索のトレードオフが現れる,後悔の最小化設定のためのアルゴリズムを検討する。
今後の研究の課題と肥大化についてコメントし、締めくくりに締めくくります。
論文 参考訳(メタデータ) (2022-05-12T02:20:34Z) - Learning Hidden Markov Models When the Locations of Missing Observations
are Unknown [54.40592050737724]
本研究では、未知の観測位置を持つデータからHMMを学習する際の一般的な問題について考察する。
我々は、下層の鎖の構造に関する仮定を一切必要としない再構成アルゴリズムを提供する。
適切な仕様の下では、プロセスのダイナミクスを再構築でき、また、見当たらない観測位置が分かっていたとしても、その有効性を示す。
論文 参考訳(メタデータ) (2022-03-12T22:40:43Z) - Detecting and Mitigating Test-time Failure Risks via Model-agnostic
Uncertainty Learning [30.86992077157326]
本稿では,すでに訓練済みのブラックボックス分類モデルの失敗リスクと予測的不確かさを推定するための,ポストホックメタラーナーであるリスクアドバイザを紹介する。
リスクアドバイザは、リスクスコアの提供に加えて、不確実性見積を、アレタリックおよびエピステマティックな不確実性コンポーネントに分解する。
ブラックボックス分類モデルおよび実世界および合成データセットのさまざまなファミリーの実験は、リスクアドバイザーがデプロイメント時の障害リスクを確実に予測していることを示している。
論文 参考訳(メタデータ) (2021-09-09T17:23:31Z) - Risk-Constrained Thompson Sampling for CVaR Bandits [82.47796318548306]
CVaR(Conditional Value at Risk)として知られる量的ファイナンスにおける一般的なリスク尺度について考察する。
本稿では,トンプソンサンプリングに基づくCVaR-TSアルゴリズムの性能について検討する。
論文 参考訳(メタデータ) (2020-11-16T15:53:22Z) - Thompson Sampling Algorithms for Mean-Variance Bandits [97.43678751629189]
我々は平均分散MABのためのトンプソンサンプリング型アルゴリズムを開発した。
我々はまた、ガウシアンとベルヌーイの盗賊に対する包括的後悔の分析も提供する。
我々のアルゴリズムは、全てのリスク許容度に対して既存のLCBベースのアルゴリズムを著しく上回っている。
論文 参考訳(メタデータ) (2020-02-01T15:33:50Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。