論文の概要: Classification of Alzheimers Disease with Deep Learning on Eye-tracking
Data
- arxiv url: http://arxiv.org/abs/2309.12574v1
- Date: Fri, 22 Sep 2023 02:02:59 GMT
- ステータス: 処理完了
- システム内更新日: 2023-09-25 16:11:05.690994
- Title: Classification of Alzheimers Disease with Deep Learning on Eye-tracking
Data
- Title(参考訳): 眼球追跡データを用いた深層学習によるアルツハイマー病の分類
- Authors: Harshinee Sriram, Cristina Conati, Thalia Field
- Abstract要約: 我々は、生のETデータに基づいて訓練されたエンドツーエンドのDeep-Learning分類器を用いて、既存の結果を改善することができるかどうかを検討する。
ターゲットAD分類タスクにVTNetを適用する上での大きな課題は、ETデータシーケンスが以前の混乱検出タスクよりもはるかに長いことである。
VTNetは、AD分類における最先端のアプローチよりも優れており、このモデルの汎用性に関する確かな証拠を提供する。
- 参考スコア(独自算出の注目度): 0.7366405857677227
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Existing research has shown the potential of classifying Alzheimers Disease
(AD) from eye-tracking (ET) data with classifiers that rely on task-specific
engineered features. In this paper, we investigate whether we can improve on
existing results by using a Deep-Learning classifier trained end-to-end on raw
ET data. This classifier (VTNet) uses a GRU and a CNN in parallel to leverage
both visual (V) and temporal (T) representations of ET data and was previously
used to detect user confusion while processing visual displays. A main
challenge in applying VTNet to our target AD classification task is that the
available ET data sequences are much longer than those used in the previous
confusion detection task, pushing the limits of what is manageable by
LSTM-based models. We discuss how we address this challenge and show that VTNet
outperforms the state-of-the-art approaches in AD classification, providing
encouraging evidence on the generality of this model to make predictions from
ET data.
- Abstract(参考訳): 既存の研究によると、アルツハイマー病(AD)は目追跡(ET)データからタスク固有の工学的特徴に依存する分類器に分類される可能性がある。
本稿では,生のETデータに基づいてエンドツーエンドに学習したDeep-Learning分類器を用いて既存の結果を改善することができるかを検討する。
この分類器(VTNet)は、GRUとCNNを並列に使用して、ETデータの視覚的(V)表現と時間的(T)表現の両方を活用する。
対象のAD分類タスクにVTNetを適用する上での大きな課題は、利用可能なETデータシーケンスが以前の混乱検出タスクよりもはるかに長いことであり、LSTMベースのモデルで管理できることの限界を押し上げることである。
本稿では,この課題にどう対処し,VTNetがAD分類における最先端のアプローチよりも優れており,ETデータから予測を行う上で,このモデルの汎用性を示す証拠を提供する。
関連論文リスト
- Web-Scale Visual Entity Recognition: An LLM-Driven Data Approach [56.55633052479446]
Webスケールのビジュアルエンティティ認識は、クリーンで大規模なトレーニングデータがないため、重大な課題を呈している。
本稿では,ラベル検証,メタデータ生成,合理性説明に多モーダル大言語モデル(LLM)を活用することによって,そのようなデータセットをキュレートする新しい手法を提案する。
実験により、この自動キュレートされたデータに基づいてトレーニングされたモデルは、Webスケールの視覚的エンティティ認識タスクで最先端のパフォーマンスを達成することが示された。
論文 参考訳(メタデータ) (2024-10-31T06:55:24Z) - Defect Classification in Additive Manufacturing Using CNN-Based Vision
Processing [76.72662577101988]
本稿では、まず、畳み込みニューラルネットワーク(CNN)を用いて、画像データセットの欠陥をAMから第2に正確に分類し、発達した分類モデルにアクティブラーニング技術を適用する。
これにより、トレーニングデータやトレーニングデータの生成に必要なデータのサイズを削減できる、ヒューマン・イン・ザ・ループ機構の構築が可能になる。
論文 参考訳(メタデータ) (2023-07-14T14:36:58Z) - Transfer Learning for Fine-grained Classification Using Semi-supervised
Learning and Visual Transformers [1.694405932826705]
画像分類のための強力なツールとして、ビジュアルトランスフォーマー(ViT)が登場した。
本研究では,セミ教師あり学習技術を用いて微調整されたViTモデルであるSemi-ViTを探索する。
以上の結果から,従来の畳み込みニューラルネットワーク(CNN)やViTよりも高い性能を示した。
論文 参考訳(メタデータ) (2023-05-17T07:51:35Z) - Unified Visual Relationship Detection with Vision and Language Models [89.77838890788638]
この研究は、複数のデータセットからラベル空間の結合を予測する単一の視覚的関係検出器のトレーニングに焦点を当てている。
視覚と言語モデルを活用した統合視覚関係検出のための新しいボトムアップ手法UniVRDを提案する。
人物体間相互作用検出とシーングラフ生成の双方による実験結果から,本モデルの競合性能が示された。
論文 参考訳(メタデータ) (2023-03-16T00:06:28Z) - Linking data separation, visual separation, and classifier performance
using pseudo-labeling by contrastive learning [125.99533416395765]
最終分類器の性能は、潜在空間に存在するデータ分離と、射影に存在する視覚的分離に依存すると論じる。
本研究は,ヒト腸管寄生虫の5つの現実的課題の画像データセットを1%の教師付きサンプルで分類し,その結果を実証する。
論文 参考訳(メタデータ) (2023-02-06T10:01:38Z) - Cluster-level pseudo-labelling for source-free cross-domain facial
expression recognition [94.56304526014875]
表情認識のためのSFUDA法を提案する。
本手法は,自己教師付き事前学習を利用して,対象データから優れた特徴表現を学習する。
提案手法の有効性を4つの適応方式で検証し,FERに適用した場合,既存のSFUDA法より一貫して優れていることを示す。
論文 参考訳(メタデータ) (2022-10-11T08:24:50Z) - Mutual Information Learned Classifiers: an Information-theoretic
Viewpoint of Training Deep Learning Classification Systems [9.660129425150926]
クロスエントロピー損失は、重度のオーバーフィッティング動作を示すモデルを見つけるのに容易である。
本稿では,既存のDNN分類器のクロスエントロピー損失最小化が,基礎となるデータ分布の条件エントロピーを本質的に学習することを証明する。
ラベルと入力の相互情報を学習することで、DNN分類器を訓練する相互情報学習フレームワークを提案する。
論文 参考訳(メタデータ) (2022-10-03T15:09:19Z) - Learning Deep Representations via Contrastive Learning for Instance
Retrieval [11.736450745549792]
本稿では、インスタンス識別に基づくコントラスト学習(CL)を用いて、この問題に取り組むための最初の試みを行う。
本研究では、事前学習されたCLモデルと微調整されたCLモデルから識別表現を導出する能力を探求することにより、この問題に対処する。
論文 参考訳(メタデータ) (2022-09-28T04:36:34Z) - Causal Scene BERT: Improving object detection by searching for
challenging groups of data [125.40669814080047]
コンピュータビジョンアプリケーションは、物体検出のようなタスクのためにニューラルネットワークでパラメータ化された学習ベースの知覚モジュールに依存している。
これらのモジュールは、トレーニングプロセスに固有のバイアスのため、予想される誤差が低いが、データの非定型的なグループに対して高い誤差を持つことが多い。
本研究の主な貢献は,シミュレートされたシーンに対して因果的介入を行うことにより,前向きにそのようなグループを発見する擬似オートマチック手法である。
論文 参考訳(メタデータ) (2022-02-08T05:14:16Z) - Multiple Organ Failure Prediction with Classifier-Guided Generative
Adversarial Imputation Networks [4.040013871160853]
多臓器不全 (MOF) は集中治療室 (ICU) 患者の死亡率が高い重篤な症候群である。
機械学習モデルを電子健康記録に適用することは、欠落した値の広範性のために難しい。
論文 参考訳(メタデータ) (2021-06-22T15:49:01Z) - Domain Adaptive Transfer Learning on Visual Attention Aware Data
Augmentation for Fine-grained Visual Categorization [3.5788754401889014]
ベースネットワークモデルに基づく微調整によるドメイン適応型知識伝達を行う。
我々は、注意認識データ拡張技術を用いて、アキュラシーの競争力の向上を示す。
提案手法は,複数の細粒度分類データセットにおける最先端結果を実現する。
論文 参考訳(メタデータ) (2020-10-06T22:47:57Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。