Exponentially faster preparation of quantum dimers via driven-dissipative stabilization
- URL: http://arxiv.org/abs/2309.12705v2
- Date: Mon, 29 Jul 2024 09:35:14 GMT
- Title: Exponentially faster preparation of quantum dimers via driven-dissipative stabilization
- Authors: Kian Hwee Lim, Wai-Keong Mok, Jia-Bin You, Jian Feng Kong, Davit Aghamalyan,
- Abstract summary: We propose a novel scheme to generate many-body entanglement between multiple qubits stabilized by dissipation into a 1D bath.
Our scheme achieves a provably exponential speedup over state-of-the-art dissipative stabilization schemes in 1D baths.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We propose a novel rapid, high-fidelity, and noise-resistant scheme to generate many-body entanglement between multiple qubits stabilized by dissipation into a 1D bath. Using a carefully designed time-dependent drive, our scheme achieves a provably exponential speedup over state-of-the-art dissipative stabilization schemes in 1D baths, which require a timescale that diverges as the target fidelity approaches unity and scales exponentially with the number of qubits. To prepare quantum dimer pairs, our scheme only requires local 2-qubit control Hamiltonians, with a protocol time that is independent of system size. This provides a scalable and robust protocol for generating a large number of entangled dimer pairs on-demand, serving as a fundamental resource for many quantum metrology and quantum information processing tasks.
Related papers
- Observation of disorder-free localization and efficient disorder averaging on a quantum processor [117.33878347943316]
We implement an efficient procedure on a quantum processor, leveraging quantum parallelism, to efficiently sample over all disorder realizations.
We observe localization without disorder in quantum many-body dynamics in one and two dimensions.
arXiv Detail & Related papers (2024-10-09T05:28:14Z) - Fast quantum interconnects via constant-rate entanglement distillation [0.0]
We develop constant-rate entanglement distillation methods for quantum interconnects.
We prove the scheme has constant-rate in expectation and numerically optimize to achieve low practical overhead.
We find our optimized schemes outperform existing computationally efficient quantum interconnect schemes by an order of magnitude in relevant regimes.
arXiv Detail & Related papers (2024-08-28T16:54:54Z) - Multi-parameter quantum metrology with stabilized multi-mode squeezed
state [13.954530422962135]
We generate and stabilize a two-mode squeezed state along two secular motional modes in a vibrating trapped ion with reservoir engineering.
We demonstrate an estimation of two simultaneous collective displacements along the squeezed axes, achieving improvements surpassing the classical limit.
The practical implications of our findings span a wide range of applications, including quantum sensing, quantum imaging, and various fields.
arXiv Detail & Related papers (2023-12-16T08:32:09Z) - Robust Control of Single-Qubit Gates at the Quantum Speed Limit [0.0]
We investigate the underlying robust time-optimal control problem so as to make the best balance.
Based on the Taylor expansion of the system's unitary propagator, we formulate the design problem as the optimal control of an augmented finite-dimensional system.
Numerical simulations for single-qubit systems show that the obtained time-optimal control pulses can effectively suppress gate errors.
arXiv Detail & Related papers (2023-09-11T10:10:58Z) - Fast quantum state transfer and entanglement preparation in strongly
coupled bosonic systems [10.14685261482056]
We propose a novel scheme to implement high-fidelity quantum state transfer (QST) and entanglement preparation (EP) with high speed.
In the QST tasks, we consider several typical quantum states and demonstrate that this method is robust against thermal noise and imperfections of experimental sequence.
In the EP tasks, the scheme is successfully implemented for the preparation of Bell states and W-type states, within a shortest preparation time.
arXiv Detail & Related papers (2023-08-10T11:44:19Z) - Quantum Gate Optimization for Rydberg Architectures in the Weak-Coupling
Limit [55.05109484230879]
We demonstrate machine learning assisted design of a two-qubit gate in a Rydberg tweezer system.
We generate optimal pulse sequences that implement a CNOT gate with high fidelity.
We show that local control of single qubit operations is sufficient for performing quantum computation on a large array of atoms.
arXiv Detail & Related papers (2023-06-14T18:24:51Z) - Pulse-controlled qubit in semiconductor double quantum dots [57.916342809977785]
We present a numerically-optimized multipulse framework for the quantum control of a single-electron charge qubit.
A novel control scheme manipulates the qubit adiabatically, while also retaining high speed and ability to perform a general single-qubit rotation.
arXiv Detail & Related papers (2023-03-08T19:00:02Z) - Realization of arbitrary doubly-controlled quantum phase gates [62.997667081978825]
We introduce a high-fidelity gate set inspired by a proposal for near-term quantum advantage in optimization problems.
By orchestrating coherent, multi-level control over three transmon qutrits, we synthesize a family of deterministic, continuous-angle quantum phase gates acting in the natural three-qubit computational basis.
arXiv Detail & Related papers (2021-08-03T17:49:09Z) - Continuous-time dynamics and error scaling of noisy highly-entangling
quantum circuits [58.720142291102135]
We simulate a noisy quantum Fourier transform processor with up to 21 qubits.
We take into account microscopic dissipative processes rather than relying on digital error models.
We show that depending on the dissipative mechanisms at play, the choice of input state has a strong impact on the performance of the quantum algorithm.
arXiv Detail & Related papers (2021-02-08T14:55:44Z) - Fast high-fidelity single-qubit gates for flip-flop qubits in silicon [68.8204255655161]
flip-flop qubit is encoded in the states with antiparallel donor-bound electron and donor nuclear spins in silicon.
We study the multilevel system that is formed by the interacting electron and nuclear spins.
We propose an optimal control scheme that produces fast and robust single-qubit gates in the presence of low-frequency noise.
arXiv Detail & Related papers (2021-01-27T18:37:30Z) - Experimental protection of quantum coherence by using a phase-tunable
image drive [0.0]
The protection of qubit coherence is an essential task in order to build a practical quantum computer.
We propose and demonstrate a simple and highly efficient alternative pulse protocol based on Floquet modes.
arXiv Detail & Related papers (2020-01-08T08:51:45Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.