論文の概要: The Mathematical Game
- arxiv url: http://arxiv.org/abs/2309.12711v1
- Date: Fri, 22 Sep 2023 08:43:57 GMT
- ステータス: 処理完了
- システム内更新日: 2023-09-25 15:20:57.219359
- Title: The Mathematical Game
- Title(参考訳): 数学ゲーム
- Authors: Marc Pierre and Quentin Cohen-Solal and Tristan Cazenave
- Abstract要約: ホロフラズム(英: Holophrasm)は、MCTSとニューラルネットワークを組み合わせた定理証明器である。
本稿では,他のゲームツリー探索アルゴリズムを用いて,ホロフラーム定理証明器の性能向上を提案する。
- 参考スコア(独自算出の注目度): 3.860785927193332
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Monte Carlo Tree Search can be used for automated theorem proving. Holophrasm
is a neural theorem prover using MCTS combined with neural networks for the
policy and the evaluation. In this paper we propose to improve the performance
of the Holophrasm theorem prover using other game tree search algorithms.
- Abstract(参考訳): モンテカルロ木探索は、定理の自動証明に使うことができる。
holophrasmは、ポリシーと評価のためにmctとニューラルネットワークを組み合わせた神経定理証明器である。
本稿では,他のゲームツリー探索アルゴリズムを用いて,ホロフラズム定理証明器の性能向上を提案する。
関連論文リスト
- Tree-of-Traversals: A Zero-Shot Reasoning Algorithm for Augmenting Black-box Language Models with Knowledge Graphs [72.89652710634051]
知識グラフ(KG)は、信頼性があり、構造化され、ドメイン固有であり、最新の外部知識を提供することで、Large Language Models(LLM)を補完する。
そこで本研究では,ゼロショット推論アルゴリズムであるTree-of-Traversalsを導入する。
論文 参考訳(メタデータ) (2024-07-31T06:01:24Z) - LiteSearch: Efficacious Tree Search for LLM [70.29796112457662]
本研究では,動的ノード選択とノードレベルの探索予算を備えた新しいガイド付き木探索アルゴリズムを提案する。
GSM8KおよびTabMWPデータセットを用いて行った実験により,本手法はベースライン法に比べて計算コストが大幅に低いことを示した。
論文 参考訳(メタデータ) (2024-06-29T05:14:04Z) - Benchmarking ChatGPT on Algorithmic Reasoning [58.50071292008407]
GNN向けに設計されたCLRSベンチマークスイートからChatGPTのアルゴリズム問題を解く能力を評価する。
ChatGPTは、Pythonを使ってこれらの問題を解決することで、専門家のGNNモデルより優れています。
論文 参考訳(メタデータ) (2024-04-04T13:39:06Z) - Nearly Optimal Steiner Trees using Graph Neural Network Assisted Monte
Carlo Tree Search [9.061356032792952]
グラフニューラルネットワークとモンテカルロ木探索を組み合わせたステイナツリーの計算手法について述べる。
まず、部分解として入力されるグラフニューラルネットワークをトレーニングし、出力として追加される新しいノードを提案する。
このニューラルネットワークはモンテカルロ探索でスタイナー木を計算するのに使用される。
論文 参考訳(メタデータ) (2023-04-30T17:15:38Z) - Bayesian Recurrent Units and the Forward-Backward Algorithm [91.39701446828144]
ベイズの定理を用いることで、ユニットワイド・リカレンスとフォワード・バックワードアルゴリズムに類似した後方再帰を導出する。
その結果得られたベイジアン再帰ユニットは、ディープラーニングフレームワーク内で再帰ニューラルネットワークとして統合することができる。
音声認識の実験は、最先端の繰り返しアーキテクチャの最後に派生したユニットを追加することで、訓練可能なパラメータの点で非常に低コストで性能を向上させることを示唆している。
論文 参考訳(メタデータ) (2022-07-21T14:00:52Z) - An Efficient Dynamic Sampling Policy For Monte Carlo Tree Search [0.0]
我々は、強化学習の枠組みであるモンテカルロ木探索(MCTS)の中で、人気の木に基づく探索戦略を考える。
本稿では,木根ノードにおける最適な行動の選択の確率を最大化するために,限られた計算予算を効率的に割り当てる動的サンプリングツリーポリシーを提案する。
論文 参考訳(メタデータ) (2022-04-26T02:39:18Z) - Learning Contextual Bandits Through Perturbed Rewards [107.6210145983805]
標準正規性条件下では、$tildeO(tildedsqrtT)$ regret上界が達成可能であることを示す。
明示的な探索の必要性を排除するために、ニューラルネットワークを更新する際の報酬を混乱させます。
論文 参考訳(メタデータ) (2022-01-24T19:10:22Z) - Batch Monte Carlo Tree Search [9.114710429587479]
この性質に基づいて,バッチ推論を用いたモンテカルロ木探索アルゴリズムを提案する。
転置テーブルは推論の結果を含むが、検索ツリーはモンテカルロツリー検索の統計情報を含む。
また、検索を改善する複数のアルゴリズムを分析することも提案している:$mu$ fpu、仮想平均、反復、第2の移動は続く。
論文 参考訳(メタデータ) (2021-04-09T09:54:21Z) - Dual Monte Carlo Tree Search [0.0]
我々はDual MCTSが、様々な対称ゲームや非対称ゲームにおいて最も広く使われているニューラルMCTSアルゴリズムであるAlphaZeroよりも優れていることを示す。
デュアルMCTSは、2つの異なる検索木、単一のディープニューラルネットワーク、PUCB、スライドウィンドウ、およびepsilon-greedyアルゴリズムの組み合わせを使用して検索木のための新しい更新技術を使用しています。
論文 参考訳(メタデータ) (2021-03-21T23:34:11Z) - Monte Carlo Tree Search for a single target search game on a 2-D lattice [0.0]
このプロジェクトは、AIプレイヤーが2次元格子内で静止目標を探索するゲームを想像する。
動物捕食行動のモデルであるレヴィ飛行探索(Levi Flight Search)と比較した。
論文 参考訳(メタデータ) (2020-11-29T01:07:45Z) - Learning to Prove Theorems by Learning to Generate Theorems [71.46963489866596]
我々は、定理証明器を訓練するために、定理と証明を自動的に合成するニューラルジェネレータを学習する。
実世界の課題に関する実験は、我々の手法による合成データが定理証明器を改善することを示した。
論文 参考訳(メタデータ) (2020-02-17T16:06:02Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。