論文の概要: Affect Recognition in Conversations Using Large Language Models
- arxiv url: http://arxiv.org/abs/2309.12881v1
- Date: Fri, 22 Sep 2023 14:11:23 GMT
- ステータス: 処理完了
- システム内更新日: 2023-09-25 14:19:44.618780
- Title: Affect Recognition in Conversations Using Large Language Models
- Title(参考訳): 大規模言語モデルを用いた会話における影響認識
- Authors: Shutong Feng, Guangzhi Sun, Nurul Lubis, Chao Zhang, Milica
Ga\v{s}i\'c
- Abstract要約: 感情、気分、感情を含む影響認識は、人間のコミュニケーションにおいて重要な役割を果たす。
本研究は,会話における人間の影響を認識するための大規模言語モデル(LLM)の能力について考察する。
- 参考スコア(独自算出の注目度): 9.426541302671545
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Affect recognition, encompassing emotions, moods, and feelings, plays a
pivotal role in human communication. In the realm of conversational artificial
intelligence (AI), the ability to discern and respond to human affective cues
is a critical factor for creating engaging and empathetic interactions. This
study delves into the capacity of large language models (LLMs) to recognise
human affect in conversations, with a focus on both open-domain chit-chat
dialogues and task-oriented dialogues. Leveraging three diverse datasets,
namely IEMOCAP, EmoWOZ, and DAIC-WOZ, covering a spectrum of dialogues from
casual conversations to clinical interviews, we evaluated and compared LLMs'
performance in affect recognition. Our investigation explores the zero-shot and
few-shot capabilities of LLMs through in-context learning (ICL) as well as
their model capacities through task-specific fine-tuning. Additionally, this
study takes into account the potential impact of automatic speech recognition
(ASR) errors on LLM predictions. With this work, we aim to shed light on the
extent to which LLMs can replicate human-like affect recognition capabilities
in conversations.
- Abstract(参考訳): 感情、気分、感情を含む影響認識は、人間のコミュニケーションにおいて重要な役割を果たす。
会話人工知能(AI)の領域では、人間の感情的な手がかりを識別し、反応する能力が、エンゲージメントと共感の相互作用を生み出す重要な要素である。
本研究では,オープンドメインのチャット対話とタスク指向対話の両方に焦点をあて,会話における人間の影響を認識するための言語モデル(LLM)の能力について考察する。
IEMOCAP, EmoWOZ, DAIC-WOZの3つの多種多様なデータセットを用いて, カジュアルな会話から臨床面接までの対話を網羅し, LLMの性能評価と評価を行った。
本研究は,テキスト内学習(ICL)によるLCMのゼロショットと少数ショット能力,およびタスク固有の微調整によるモデル能力について検討する。
さらに,自動音声認識(ASR)誤差がLLM予測に与える影響についても検討した。
本研究は,LLMが会話における人間のような感情認識能力を再現できる程度に光を当てることを目的としている。
関連論文リスト
- Interactive Dialogue Agents via Reinforcement Learning on Hindsight Regenerations [58.65755268815283]
多くの実際の対話は対話的であり、つまりエージェントの発話が会話の相手に影響を与えるか、情報を引き出すか、意見を変えるかである。
この事実を利用して、既存の最適データを書き直し、拡張し、オフライン強化学習(RL)を介してトレーニングする。
実際の人間によるユーザ調査の結果、我々のアプローチは既存の最先端の対話エージェントを大きく上回っていることがわかった。
論文 参考訳(メタデータ) (2024-11-07T21:37:51Z) - LMLPA: Language Model Linguistic Personality Assessment [11.599282127259736]
大規模言語モデル(LLM)は、日常の生活や研究にますます利用されている。
与えられたLLMの性格を測定することは、現在課題である。
言語モデル言語パーソナリティアセスメント(LMLPA)は,LLMの言語的パーソナリティを評価するシステムである。
論文 参考訳(メタデータ) (2024-10-23T07:48:51Z) - AER-LLM: Ambiguity-aware Emotion Recognition Leveraging Large Language Models [18.482881562645264]
この研究は、あいまいな感情を認識する上でのLarge Language Models(LLM)の可能性を探究する最初のものである。
我々はゼロショットと少数ショットのプロンプトを設計し、過去の対話を曖昧な感情認識のための文脈情報として組み込んだ。
論文 参考訳(メタデータ) (2024-09-26T23:25:21Z) - Cross-lingual Speech Emotion Recognition: Humans vs. Self-Supervised Models [16.0617753653454]
本研究では,人間のパフォーマンスとSSLモデルの比較分析を行った。
また、モデルと人間のSER能力を発話レベルとセグメントレベルの両方で比較する。
その結果,適切な知識伝達を行うモデルでは,対象言語に適応し,ネイティブ話者に匹敵する性能が得られることがわかった。
論文 参考訳(メタデータ) (2024-09-25T13:27:17Z) - Exploring Knowledge Tracing in Tutor-Student Dialogues [53.52699766206808]
本稿では,教師と学生の対話における知識追跡(KT)の最初の試みについて述べる。
そこで本研究では,対話の各ターンに係わる知識コンポーネントやスキルを同定する手法を提案する。
次に,得られたラベル付きデータに様々なKT手法を適用し,対話全体を通して学生の知識レベルを追跡する。
論文 参考訳(メタデータ) (2024-09-24T22:31:39Z) - Rel-A.I.: An Interaction-Centered Approach To Measuring Human-LM Reliance [73.19687314438133]
インタラクションの文脈的特徴が依存に与える影響について検討する。
文脈特性が人間の信頼行動に大きく影響していることが判明した。
これらの結果から,キャリブレーションと言語品質だけでは人間とLMの相互作用のリスクを評価するには不十分であることが示唆された。
論文 参考訳(メタデータ) (2024-07-10T18:00:05Z) - Can LLMs Understand the Implication of Emphasized Sentences in Dialogue? [64.72966061510375]
強調は人間のコミュニケーションにおいて重要な要素であり、対話における純粋テキストを超えて話者の意図と含意を示す。
本稿では,強調の意味を抽出した強調注釈付き対話サンプルを用いたベンチマークであるEmphasized-Talkを紹介する。
オープンソースと商用の両方で様々な大規模言語モデル(LLM)を評価し,その性能を重要視して評価する。
論文 参考訳(メタデータ) (2024-06-16T20:41:44Z) - Affective-NLI: Towards Accurate and Interpretable Personality Recognition in Conversation [30.820334868031537]
会話におけるパーソナリティ認識(PRC)は、テキスト対話コンテンツを通して話者の性格特性を識別することを目的としている。
本稿では,PRCの正確かつ解釈可能なAffective Natural Language Inference (Affective-NLI)を提案する。
論文 参考訳(メタデータ) (2024-04-03T09:14:24Z) - Reasoning in Conversation: Solving Subjective Tasks through Dialogue
Simulation for Large Language Models [56.93074140619464]
本稿では,対話シミュレーションによる主観的課題の解決に焦点を当てたRiC(Reasoning in Conversation)を提案する。
RiCのモチベーションは、チェーン・オブ・ソート・スタイルの合理性を提供するのではなく、対話をシミュレートすることで有用な文脈情報をマイニングすることである。
GPT-4、ChatGPT、OpenChatなど、APIベースのLLMとオープンソースのLLMの両方を12のタスクで評価する。
論文 参考訳(メタデータ) (2024-02-27T05:37:10Z) - LLM Agents in Interaction: Measuring Personality Consistency and
Linguistic Alignment in Interacting Populations of Large Language Models [4.706971067968811]
簡単な変数誘導サンプリングアルゴリズムを用いて,大規模言語モデル (LLM) エージェントの2群集団を作成する。
人格検査を行ない、共同作業にエージェントを提出し、異なるプロファイルが会話相手に対して異なるレベルの人格整合性および言語的整合性を示すことを確認する。
論文 参考訳(メタデータ) (2024-02-05T11:05:20Z) - Large Language Models Understand and Can be Enhanced by Emotional
Stimuli [53.53886609012119]
我々は、感情的な刺激を理解するために、大規模言語モデルの能力を探究する第一歩を踏み出す。
実験の結果,LLMは感情的知能を把握でき,その性能は感情的刺激によって改善できることがわかった。
EmotionPromptが生成タスクの性能を大幅に向上させることを示す。
論文 参考訳(メタデータ) (2023-07-14T00:57:12Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。