Completeness of qufinite ZXW calculus, a graphical language for
finite-dimensional quantum theory
- URL: http://arxiv.org/abs/2309.13014v2
- Date: Mon, 29 Jan 2024 13:20:02 GMT
- Title: Completeness of qufinite ZXW calculus, a graphical language for
finite-dimensional quantum theory
- Authors: Quanlong Wang, Boldizs\'ar Po\'or and Razin A. Shaikh
- Abstract summary: We introduce the qufinite ZXW calculus - a graphical language for reasoning about finite-dimensional quantum theory.
We prove the completeness of this calculus by demonstrating that any qufinite ZXW diagram can be rewritten into its normal form.
Our work paves the way for a comprehensive diagrammatic description of quantum physics, opening the doors of this area to the wider public.
- Score: 0.11049608786515838
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Finite-dimensional quantum theory serves as the theoretical foundation for
quantum information and computation. Mathematically, it is formalized in the
category FHilb, comprising all finite-dimensional Hilbert spaces and linear
maps between them. However, there has not been a graphical language for FHilb
which is both universal and complete and thus incorporates a set of rules rich
enough to derive any equality of the underlying formalism solely by rewriting.
In this paper, we introduce the qufinite ZXW calculus - a graphical language
for reasoning about finite-dimensional quantum theory. We set up a unique
normal form to represent an arbitrary tensor and prove the completeness of this
calculus by demonstrating that any qufinite ZXW diagram can be rewritten into
its normal form. This result implies the equivalence of the qufinite ZXW
calculus and the category FHilb, leading to a purely diagrammatic framework for
finite-dimensional quantum theory with the same reasoning power. In addition,
we identify several domains where the application of the qufinite ZXW calculus
holds promise. These domains include spin networks, interacting
mixed-dimensional systems in quantum chemistry, quantum programming, high-level
description of quantum algorithms, and mixed-dimensional quantum computing. Our
work paves the way for a comprehensive diagrammatic description of quantum
physics, opening the doors of this area to the wider public.
Related papers
- Quantum Probability Geometrically Realized in Projective Space [0.0]
This paper aims to pass all quantum probability formulas to the projective space associated to the complex Hilbert space of a given quantum system.
The upshot is that quantum theory is the probability theory of projective subspaces, or equivalently, of quantum events.
arXiv Detail & Related papers (2024-10-23T20:29:15Z) - An explicit tensor notation for quantum computing [0.0]
This paper introduces a formalism that aims to describe the intricacies of quantum computation.
The focus is on providing a comprehensive representation of quantum states for multiple qubits and the quantum gates that manipulate them.
arXiv Detail & Related papers (2024-09-16T17:21:17Z) - Absolute dimensionality of quantum ensembles [41.94295877935867]
The dimension of a quantum state is traditionally seen as the number of superposed distinguishable states in a given basis.
We propose an absolute, i.e.basis-independent, notion of dimensionality for ensembles of quantum states.
arXiv Detail & Related papers (2024-09-03T09:54:15Z) - ZX-calculus is Complete for Finite-Dimensional Hilbert Spaces [0.09831489366502298]
The ZX-calculus is a graphical language for quantum computing and quantum information theory.
We prove completeness of finite-dimensional ZX-calculus, incorporating only the mixed-dimensional Z-spider and the qudit X-spider as generators.
Our approach builds on the completeness of another graphical language, the finite-dimensional ZW-calculus, with direct translations between these two calculi.
arXiv Detail & Related papers (2024-05-17T16:35:07Z) - Postulating the Unicity of the Macroscopic Physical World [0.0]
We argue that the unicity of the macroscopic world is a fundamental postulate of physics, rather than an issue that must be mathematically justified or demonstrated.
This is made possible by using general operator algebras to extend the mathematical description of the physical world towards macroscopic systems.
arXiv Detail & Related papers (2023-10-09T19:21:36Z) - Quantum Circuit Completeness: Extensions and Simplifications [44.99833362998488]
The first complete equational theory for quantum circuits has only recently been introduced.
We simplify the equational theory by proving that several rules can be derived from the remaining ones.
The complete equational theory can be extended to quantum circuits with ancillae or qubit discarding.
arXiv Detail & Related papers (2023-03-06T13:31:27Z) - No-signalling constrains quantum computation with indefinite causal
structure [45.279573215172285]
We develop a formalism for quantum computation with indefinite causal structures.
We characterize the computational structure of higher order quantum maps.
We prove that these rules, which have a computational and information-theoretic nature, are determined by the more physical notion of the signalling relations between the quantum systems.
arXiv Detail & Related papers (2022-02-21T13:43:50Z) - Generalized Probabilistic Theories in a New Light [0.0]
A new answer to the question of why our universe is quantum mechanical rather than classical will be presented.
This paper shows that there is still a possibility that there might be a deterministic level from which our universe emerges.
arXiv Detail & Related papers (2021-03-08T21:28:19Z) - Preferred basis, decoherence and a quantum state of the Universe [77.34726150561087]
We review a number of issues in foundations of quantum theory and quantum cosmology.
These issues can be considered as a part of the scientific legacy of H.D. Zeh.
arXiv Detail & Related papers (2020-06-28T18:07:59Z) - From a quantum theory to a classical one [117.44028458220427]
We present and discuss a formal approach for describing the quantum to classical crossover.
The method was originally introduced by L. Yaffe in 1982 for tackling large-$N$ quantum field theories.
arXiv Detail & Related papers (2020-04-01T09:16:38Z) - PBS-Calculus: A Graphical Language for Coherent Control of Quantum
Computations [77.34726150561087]
We introduce the PBS-calculus to represent and reason on quantum computations involving coherent control of quantum operations.
We equip the language with an equational theory, which is proved to be sound and complete.
We consider applications like the implementation of controlled permutations and the unrolling of loops.
arXiv Detail & Related papers (2020-02-21T16:15:58Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.