Tight bounds on Pauli channel learning without entanglement
- URL: http://arxiv.org/abs/2309.13461v3
- Date: Fri, 18 Oct 2024 04:18:05 GMT
- Title: Tight bounds on Pauli channel learning without entanglement
- Authors: Senrui Chen, Changhun Oh, Sisi Zhou, Hsin-Yuan Huang, Liang Jiang,
- Abstract summary: We consider learning algorithms without entanglement to be those that only utilize states, measurements, and operations that are separable between the main system of interest and an ancillary system.
We show that these algorithms are equivalent to those that apply quantum circuits on the main system interleaved with mid-circuit measurements and classical feedforward.
- Score: 2.2845597309741157
- License:
- Abstract: Quantum entanglement is a crucial resource for learning properties from nature, but a precise characterization of its advantage can be challenging. In this work, we consider learning algorithms without entanglement to be those that only utilize states, measurements, and operations that are separable between the main system of interest and an ancillary system. Interestingly, we show that these algorithms are equivalent to those that apply quantum circuits on the main system interleaved with mid-circuit measurements and classical feedforward. Within this setting, we prove a tight lower bound for Pauli channel learning without entanglement that closes the gap between the best-known upper and lower bound. In particular, we show that $\Theta(2^n\varepsilon^{-2})$ rounds of measurements are required to estimate each eigenvalue of an $n$-qubit Pauli channel to $\varepsilon$ error with high probability when learning without entanglement. In contrast, a learning algorithm with entanglement only needs $\Theta(\varepsilon^{-2})$ copies of the Pauli channel. The tight lower bound strengthens the foundation for an experimental demonstration of entanglement-enhanced advantages for Pauli noise characterization.
Related papers
- Adaptivity is not helpful for Pauli channel learning [12.123876307427103]
This note shows that adaptive strategies do not offer additional advantages for learning and testing Pauli channels with entangled input.
First, the tight query complexity of learning Pauli channels with entangled input is established for the general norm $l_p$.
We demonstrate that the query complexity of estimating the noise level of a Pauli channel, characterized by the entropy of its error distribution, is $Theta(4n/n)$.
arXiv Detail & Related papers (2024-03-14T01:54:29Z) - Towards large-scale quantum optimization solvers with few qubits [59.63282173947468]
We introduce a variational quantum solver for optimizations over $m=mathcalO(nk)$ binary variables using only $n$ qubits, with tunable $k>1$.
We analytically prove that the specific qubit-efficient encoding brings in a super-polynomial mitigation of barren plateaus as a built-in feature.
arXiv Detail & Related papers (2024-01-17T18:59:38Z) - Provable Advantage in Quantum PAC Learning [3.291862617649511]
We show that PAC learners can achieve a generic advantage in quantum learning.
Up to polylogarithmic factors, this is a square root improvement over the classical learning sample complexity.
arXiv Detail & Related papers (2023-09-19T19:26:20Z) - Simulating Noisy Variational Quantum Algorithms: A Polynomial Approach [1.806183113759115]
Large-scale variational quantum algorithms are widely recognized as a potential pathway to achieve quantum advantages.
We present a novel $gammaPPP method based on the integral path of observables back-propagation on paths.
We conduct classical simulations of IBM's zeronoised experimental results on the 127-qubit Eagle processor.
arXiv Detail & Related papers (2023-06-09T10:42:07Z) - Lower Bounds on Learning Pauli Channels [8.72305226979945]
We show lower bounds on the sample complexity for learning Pauli channels in diamond norm with unentangled measurements.
In the non-adaptive setting, we show a lower bound of $Omega (23nepsilon-2)$ to learn an $n$-qubit Pauli channel.
In the adaptive setting, we show a lower bound of $Omega (22.5nepsilon-2)$ for $epsilon=mathcalO (2-n)$, and a lower bound of $Omega (22n
arXiv Detail & Related papers (2023-01-22T20:01:34Z) - Minimax-Optimal Multi-Agent RL in Zero-Sum Markov Games With a
Generative Model [50.38446482252857]
Two-player zero-sum Markov games are arguably the most basic setting in multi-agent reinforcement learning.
We develop a learning algorithm that learns an $varepsilon$-approximate Markov NE policy using $$ widetildeObigg.
We derive a refined regret bound for FTRL that makes explicit the role of variance-type quantities.
arXiv Detail & Related papers (2022-08-22T17:24:55Z) - Learning Two-Player Mixture Markov Games: Kernel Function Approximation
and Correlated Equilibrium [157.0902680672422]
We consider learning Nash equilibria in two-player zero-sum Markov Games with nonlinear function approximation.
We propose a novel online learning algorithm to find a Nash equilibrium by minimizing the duality gap.
arXiv Detail & Related papers (2022-08-10T14:21:54Z) - A single $T$-gate makes distribution learning hard [56.045224655472865]
This work provides an extensive characterization of the learnability of the output distributions of local quantum circuits.
We show that for a wide variety of the most practically relevant learning algorithms -- including hybrid-quantum classical algorithms -- even the generative modelling problem associated with depth $d=omega(log(n))$ Clifford circuits is hard.
arXiv Detail & Related papers (2022-07-07T08:04:15Z) - Quantum advantages for Pauli channel estimation [2.5496329090462626]
entangled measurements provide an exponential advantage in sample complexity for Pauli channel estimation.
We show how to apply the ancilla-assisted estimation protocol to a practical quantum benchmarking task.
arXiv Detail & Related papers (2021-08-19T04:10:28Z) - Provably Efficient Reward-Agnostic Navigation with Linear Value
Iteration [143.43658264904863]
We show how iteration under a more standard notion of low inherent Bellman error, typically employed in least-square value-style algorithms, can provide strong PAC guarantees on learning a near optimal value function.
We present a computationally tractable algorithm for the reward-free setting and show how it can be used to learn a near optimal policy for any (linear) reward function.
arXiv Detail & Related papers (2020-08-18T04:34:21Z) - Learning Halfspaces with Tsybakov Noise [50.659479930171585]
We study the learnability of halfspaces in the presence of Tsybakov noise.
We give an algorithm that achieves misclassification error $epsilon$ with respect to the true halfspace.
arXiv Detail & Related papers (2020-06-11T14:25:02Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.