論文の概要: Accelerating Machine Learning Algorithms with Adaptive Sampling
- arxiv url: http://arxiv.org/abs/2309.14221v1
- Date: Mon, 25 Sep 2023 15:25:59 GMT
- ステータス: 処理完了
- システム内更新日: 2023-09-26 15:01:21.891771
- Title: Accelerating Machine Learning Algorithms with Adaptive Sampling
- Title(参考訳): 適応サンプリングによる機械学習アルゴリズムの高速化
- Authors: Mo Tiwari
- Abstract要約: しばしば、計算集約的なサブルーチンを、品質のほとんど劣化しない特別な種類のランダム化されたサブルーチンに置換するのに十分である。
この論文は、しばしば計算集約的なサブルーチンを、品質のほとんど劣化しない特別な種類のランダム化されたサブルーチンに置き換えるのが十分であることを示している。
- 参考スコア(独自算出の注目度): 1.539582851341637
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The era of huge data necessitates highly efficient machine learning
algorithms. Many common machine learning algorithms, however, rely on
computationally intensive subroutines that are prohibitively expensive on large
datasets. Oftentimes, existing techniques subsample the data or use other
methods to improve computational efficiency, at the expense of incurring some
approximation error. This thesis demonstrates that it is often sufficient,
instead, to substitute computationally intensive subroutines with a special
kind of randomized counterparts that results in almost no degradation in
quality.
- Abstract(参考訳): 巨大なデータの時代は、非常に効率的な機械学習アルゴリズムを必要とする。
しかし、多くの一般的な機械学習アルゴリズムは、大規模なデータセットに制限的に高価な計算集約サブルーチンに依存している。
しばしば、既存の技術は近似誤差を発生させることなく、データをサブサンプリングしたり、他の手法を使って計算効率を向上させる。
この論文は、計算集約型サブルーチンを、品質の低下をほとんど起こさない特殊な種類のランダム化サブルーチンに置き換えるのに十分なことがしばしば示されている。
関連論文リスト
- Machine Learning Training Optimization using the Barycentric Correction
Procedure [0.0]
本研究では,機械学習アルゴリズムとBCP(Barycentric correct procedure)と呼ばれる効率的な手法を組み合わせることを提案する。
この組み合わせによって、実データと合成データの時間に関する大きな利点が得られ、インスタンス数や次元が増加すると精度を損なうことなく得られることがわかった。
論文 参考訳(メタデータ) (2024-03-01T13:56:36Z) - Stochastic Amortization: A Unified Approach to Accelerate Feature and Data Attribution [62.71425232332837]
雑音ラベル付きモデルを用いたトレーニングは安価で驚くほど効果的であることを示す。
このアプローチは、いくつかの特徴属性とデータ評価手法を著しく加速し、しばしば既存のアプローチよりも桁違いにスピードアップする。
論文 参考訳(メタデータ) (2024-01-29T03:42:37Z) - Randomized Dimension Reduction with Statistical Guarantees [0.27195102129095]
この論文は、高速な実行と効率的なデータ利用のためのアルゴリズムをいくつか探求している。
一般化と分散性を向上する様々なデータ拡張を組み込んだ学習アルゴリズムに着目する。
具体的には、第4章では、データ拡張整合正則化のための複雑性分析のサンプルを提示する。
論文 参考訳(メタデータ) (2023-10-03T02:01:39Z) - Scalable Batch Acquisition for Deep Bayesian Active Learning [70.68403899432198]
ディープラーニングでは、各ステップでマークアップする複数の例を選択することが重要です。
BatchBALDのような既存のソリューションでは、多くの例を選択する際に大きな制限がある。
本稿では,より計算効率のよいLarge BatchBALDアルゴリズムを提案する。
論文 参考訳(メタデータ) (2023-01-13T11:45:17Z) - Bioinspired Cortex-based Fast Codebook Generation [0.09449650062296822]
脳内の知覚皮質ネットワークにインスパイアされた特徴抽出法を提案する。
バイオインスパイアされた大脳皮質と呼ばれるこのアルゴリズムは、より優れた計算効率を持つストリーミング信号の特徴に収束する。
ここでは、クラスタリングおよびベクトル量子化における大脳皮質モデルの優れた性能を示す。
論文 参考訳(メタデータ) (2022-01-28T18:37:43Z) - Machine Learning for Online Algorithm Selection under Censored Feedback [71.6879432974126]
オンラインアルゴリズム選択(OAS)では、アルゴリズム問題クラスのインスタンスがエージェントに次々に提示され、エージェントは、固定された候補アルゴリズムセットから、おそらく最高のアルゴリズムを迅速に選択する必要がある。
SAT(Satisfiability)のような決定問題に対して、品質は一般的にアルゴリズムのランタイムを指す。
本研究では,OASのマルチアームバンディットアルゴリズムを再検討し,この問題に対処する能力について議論する。
ランタイム指向の損失に適応し、時間的地平線に依存しない空間的・時間的複雑さを維持しながら、部分的に検閲されたデータを可能にする。
論文 参考訳(メタデータ) (2021-09-13T18:10:52Z) - Benchmarking Processor Performance by Multi-Threaded Machine Learning
Algorithms [0.0]
本稿では,マルチスレッド機械学習クラスタリングアルゴリズムの性能比較を行う。
私は、アルゴリズムのパフォーマンス特性を決定するために、線形回帰、ランダムフォレスト、K-Nearest Neighborsに取り組んでいます。
論文 参考訳(メタデータ) (2021-09-11T13:26:58Z) - Towards Optimally Efficient Tree Search with Deep Learning [76.64632985696237]
本稿では,線形モデルから信号整数を推定する古典整数最小二乗問題について検討する。
問題はNPハードであり、信号処理、バイオインフォマティクス、通信、機械学習といった様々な応用でしばしば発生する。
本稿では, 深いニューラルネットワークを用いて, 単純化されたメモリバウンドA*アルゴリズムの最適推定を推定し, HATSアルゴリズムを提案する。
論文 参考訳(メタデータ) (2021-01-07T08:00:02Z) - Quantum-Inspired Algorithms from Randomized Numerical Linear Algebra [53.46106569419296]
我々は、リコメンダシステムと最小二乗回帰のためのクエリをサポートする古典的な(量子でない)動的データ構造を作成する。
これらの問題に対する以前の量子インスパイアされたアルゴリズムは、レバレッジやリッジレベレッジスコアを偽装してサンプリングしていると我々は主張する。
論文 参考訳(メタデータ) (2020-11-09T01:13:07Z) - Run2Survive: A Decision-theoretic Approach to Algorithm Selection based
on Survival Analysis [75.64261155172856]
生存分析(SA)は、自然に検閲されたデータをサポートし、アルゴリズムランタイムの分散モデルを学習するためにそのようなデータを使用する適切な方法を提供する。
我々は、アルゴリズム選択に対する洗練された決定論的アプローチの基礎として、そのようなモデルを活用し、Run2Surviveを疑う。
標準ベンチマークASlibによる広範な実験では、我々のアプローチは競争力が高く、多くの場合、最先端のASアプローチよりも優れていることが示されている。
論文 参考訳(メタデータ) (2020-07-06T15:20:17Z) - Guidelines for enhancing data locality in selected machine learning
algorithms [0.0]
データ局所性を利用した機械学習アルゴリズムの性能向上手法の1つを分析する。
繰り返しのデータアクセスは、データ移動における冗長性と見なすことができる。
この研究は、結果を直接再利用することによって、これらの冗長性を避けるためのいくつかの機会を特定する。
論文 参考訳(メタデータ) (2020-01-09T14:16:40Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。